USQ_Logo

Publications

Arsenic-Related Publications of the Chair (2018-Current)

University of Southern Queensland - australia
  • Ahmad, M., Usman, A.R.A, Hussain, Q., Al-Farraj, A.S.F., Tsang, Y.F., Bundschuh, J., Al-Wabel, M.I., 2020. Fabrication and evaluation of silica embedded and zerovalent iron composited biochars for arsenate removal from water. Environmental Pollution, 115256. https://doi.org/10.1016/j.envpol.2020.115256
  • Alarc贸n-Herrera, M.T. Martin-Alarc贸n, D.A., Guti茅rrez, M., Reynoso-Cuevas, L., Mart铆n-Dom铆nguez, A., Olmos-M谩rquez, M.A., Bundschuh, J., 2020. Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data visualization. Science of the Total Environment 698, 134168. https://doi.org/10.1016/j.scitotenv.2019.134168
  • Alkurdi, S.S.A, Al-Juboori, R.A., Bundschuh, J., Bowtell, L., Marchuk, A., 2020. Inorganic arsenic species removal from water using bone char: A detailed study on adsorption kinetic and isotherm models using error functions analysis. Journal of Hazardous Materials, 124112. https://doi.org/10.1016/j.jhazmat.2020.124112
  • Alkurdi, S.S.A., Al-Juboori, R.A., Bundschuh, J., Bowtell, L., McKnight, S., 2020. Effect of pyrolysis conditions on bone char characterization and its ability for arsenic and fluoride removal. Environmental Pollution 262, 114221. https://doi.org/10.1016/j.envpol.2020.114221
  • Amen, R., Bashir,H., Bibi, I., Shaheen, S.M., Niazi, N.K., Shahid, M., Hussain, M.M., Antoniadis, V., Shakoor, M.B., Al-Solaimani, S.G., Wang, H., Bundschuh, H., Rinklebe, J. 2020. A critical review on arsenic removal from water using biochar-based sorbents: The significance of modification and redox reactions. Chemical Engineering Journal, 125195. https://doi.org/10.1016/j.cej.2020.125195
  • Aull贸n Alcaine, A., Schulz, C., Bundschuh, J., Jacks, G., Thunvik, R., Gustafsson, J.-P., M枚rth, C.-M., Sracek, O., Ahmad, A., Bhattacharya, P., 2020. Hydrogeochemical controls on the mobility of arsenic, fluoride and other geogenic co-contaminants in the shallow aquifers of northeastern La Pampa Province in Argentina. Science of The Total Environment, 136671. https://doi.org/10.1016/j.scitotenv.2020.136671
  • Bundschuh, J., Armienta, M.A., Morales-Simfors, N., Alam, M.A., L贸pez, D.L., Delgado Quezada, V., Dietrich, S., Schneider, J., Tapia, J., Sracek, O., Castillo, E., Marco Parra, L.-M., Altamirano Espinoza, M., L.R.G. Guilherme, Sosa, N.N., Niazi, N.K., Tomaszewska, B., Lizama Allende, K., Bieger, K., Alonso, D.L., Brand茫o, P.F.B., Bhattacharya, B., Litter, M.I., Ahmad, A., 2020. Arsenic in Latin America: New findings on source, mobilization and mobility in human environments in 20 countries based on decadal research 2010-2020. Critical Reviews in Environmental Science and Technology. https://doi.org/10.1080/10643389.2020.1770527
  • Ca帽as Kurz, E.E., Hellriegel, U., Luong V.T., Bundschuh, J., Hoinkis, J., 2020. Selective ion adsorption with pilot-scale membrane capacitive deionization (MCDI): Arsenic, ammonium and manganese removal. Water Res. & Tech. 198, 163-169.
  • Ca帽as Kurz, E.E., Luong, V.T., Hellriegel, U., Leidinger, F., Luu, T.L., Bundschuh, J., Hoinkis, J., 2020. Iron-based subsurface arsenic removal (SAR): Results of a long-term pilot-scale test in Vietnam. Water Research, 115929. https://doi.org/10.1016/j.watres.2020.115929
  • Delgado Quezada, V. Altamirano Espinoza, M., Bundschuh, J., 2020. Arsenic in geoenvironments of Nicaragua: Exposure, health effects, mitigation and future needs. Science of The Total Environment, 136527. https://doi.org/10.1016/j.scitotenv.2020.136527
  • Hellriegel, U., Ca帽as Kurz, E.E., Luong, T.V., Bundschuh, J., Hoinkis, J., 2020. Modular treatment of arsenic-laden brackish groundwater using solar-powered subsurface arsenic removal (SAR) and membrane capacitive deionization (MCDI) in Vietnam. Journal of Water Reuse and Desalination. https://doi.org/10.2166/wrd.2020.031
  • Herath, I., Zhao, F.-J., Bundschuh, J., Wang, P., Wang, J., Ok, J.-S., Palansooriya, K.N., Vithanage, M., 2020. Microbe mediated immobilization of arsenic in the rice rhizosphere after incorporation of silica impregnated biochar composites. Journal of Hazardous Materials, 123096. https://doi.org/10.1016/j.jhazmat.2020.123096
  • Herath, I., Kumarathilaka, P., Bundschuh, J., Marchuk, A., Rinklebe, J., 2020. A fast analytical protocol for simultaneous speciation of arsenic by Ultra-High Performance Liquid Chromatography (UHPLC) hyphenated to Inductively Coupled Plasma Mass. Talanta 208, 120457. https://doi.org/10.1016/j.talanta.2019.120457
  • Khan, K.M., Chakraborty, R., Bundschuh, J., Bhattacharya, P., Parvez, F., 2020. Health effects of arsenic exposure in Latin America: An overview of the past eight years of research. Science of The Total Environment 710, 136071. https://doi.org/10.1016/j.scitotenv.2019.136071
  • Kumarathilaka, P., Bundschuh, J., Seneweera, S., Ok, J.S., 2020. An integrated approach of rice hull biochar-alternative water management as a promising tool to decrease inorganic arsenic levels and to sustain essential element contents in rice. Journal of Hazardous Materials, 124188. https://doi.org/10.1016/j.jhazmat.2020.124188
  • Kumarathilaka, P., Seneweera, S., Ok, Y.S., Meharg, A.A., Bundschuh, J., 2020. Mitigation of arsenic accumulation in rice: An agronomical, physico-chemical, and biological approach鈥揂 critical review. Critical Reviews in Environmental Science and Technology 50(1), 31-71. https://doi.org/10.1080/10643389.2019.1618691
  • Maity, J.P., Chen, C.Y., Bhattacharya, P., Sharma, R.K., Ahmad, A., Patnaik, S., Bundschuh, J., 2020. Arsenic removal and mitigation options by advanced application of nano-technological and biological processes. Journal of Hazardous Materials, 123885. https://doi.org/10.1016/j.jhazmat.2020.123885
  • Morales-Simfors, N., Bundschuh, J., Herath, I., Inguaggiato, C., Caselli, A.T., Tapia, J., Apaza Choquehuayta, F.E., Armienta, M.A., Ormachea, M., Joseph, E., L贸pez, D.L., 2020. Arsenic in Latin America: A critical overview on the geochemistry of arsenic originating from geothermal features and volcanic emissions for solving its environmental consequences. Science of The Total Environment 716, 135564. https://doi.org/10.1016/j.scitotenv.2019.135564
  • Tomaszewska, B., Bundschuh, J., Pajak, L., Dendys, M., Delgado Quezada, V., Bodzek, M., Armienta, M.A., Mu帽oz, M.O., Kasztelewicz, A., 2020. Use of low-enthalpy and waste geothermal energy sources to solve arsenic problems in freshwater production in selected regions of Latin America using a process membrane distillation – research into model solutions. Journal of the Total Environment, 136853. https://doi.org/10.1016/j.scitotenv.2020.136853
  • Weerasundara, L., Gabriele, B., Figoli, A., Ok, Y.S., Bundschuh, J., 2020. Hydrogels: Novel materials for contaminant removal in water鈥擜 review. Critical Reviews in Environmental Science and Technology, 1-45. https://doi.org/10.1080/10643389.2020.1776055
  • Weerasundara, L., Ok, J.S., Bundschuh, J., 2020. Selective removal of arsenic in water 鈥 A critical review. Environmental Pollution, 115668. https://doi.org/10.1016/j.envpol.2020.115668
  • Caixeta Martins, G., de Oliveira, C., Godinho Ribeiro, P., Natal-da-Luz, T., Sousa, J.P., Bundschuh, J., Guilherme, L.R.G., 2019. Assessing the Brazilian prevention value for soil arsenic: Effects on emergence and growth of plant species relevant to tropical agroecosystems. Science of The Total Environment 694, 133663. https://doi.org/10.1016/j.scitotenv.2019.133663
  • Kumar, R., Patel, M., Singh, P., Bundschuh, J., Pittman Jr, C.U., Trakal, L., Mohan, D., 2019. Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: Methods, experience from, and options for Latin America. Science of The Total Environment 694, 133427. https://doi.org/10.1016/j.scitotenv.2019.07.233
  • Morales-Simfors, N., Bundschuh, J., Herath, I., Inguaggiato, C., Caselli, A.T., Tapia, J., Apaza Choquehuayta, F.E., Armienta, M.A., Ormachea, M., Joseph, E., L贸pez, D.L., 2019. Arsenic in Latin America: A critical overview on the geochemistry of arsenic originating from geothermal features and volcanic emissions for solving its environmental consequences. Science of The Total Environment, 135564. https://doi.org/10.1016/j.scitotenv.2019.135564
  • Caixeta Martins, G., de Oliveira, C., Godinho Ribeiro, P., Natal-da-Luz, T., Sousa, J.P., Bundschuh, J., Guilherme, L.R.G., 2019. Assessing the most sensitive and reliable endpoints in plant growth tests to improve arsenic risk assessment. Science of The Total Environment, 134753. https://doi.org/10.1016/j.scitotenv.2019.134753
  • Coomar, P., Mukherjee, A., Bhattacharya, P., Bundschuh, J., Verma, S., Fryar, A.E., Ramos Ramos, O.E., Ormachea Mu帽oz, M., Gupta, S., Mahanta, C., Quino, I., Thunvik, R., 2019. Contrasting controls on hydrogeochemistry of arsenic-enriched groundwater in the homologous tectonic settings of Andean and Himalayan basin aquifers, Latin America and South Asia. Science of The Total Environment 689, 1370-1387. https://doi.org/10.1016/j.scitotenv.2019.05.444
  • Mukherjee, A., Gupta, S., Coomar, P., Fryar, A.E., Guillot, S., Verma, S., Bhattacharya, P., Bundschuh, J., Charlet, L., 2019. Plate tectonics influence on geogenic arsenic cycling: From primary sources to global groundwater enrichment. Science of The Total Environment 683, 793-807. https://doi.org/10.1016/j.scitotenv.2019.04.255
  • Baeyens, W., Mirlean, N., Bundschuh, J., de Winter, N., Baisch, P., Rodrigues da Silva J煤nior, F.M., Gao, Y., 2019. Arsenic enrichment in sediments and beaches of Brazilian coastal waters: A review. Science of The Total Environment 681, 143-154. https://doi.org/10.1016/j.scitotenv.2019.05.126
  • Rioyo, J., Aravinthan, V., Bundschuh, J., 2019. The effect of 鈥楬igh-pH pretreatment鈥檕n RO concentrate minimization in a groundwater desalination facility using batch air gap membrane distillation. Separation and Purification Technology, 115699. https://doi.org/10.1016/j.seppur.2019.115699
  • Kumarathilaka, P., Seneweera, S., Ok, Y.S., Meharg, A.A., Bundschuh, J., 2019. Arsenic in cooked rice foods: Assessing health risks and mitigation options. Environment International 127, 584-591. https://doi.org/10.1016/j.envint.2019.04.004
  • Dehbandi, R., Abbasnejad, A., Karimi, Z., Herath, I., Bundschuh, J., 2019. Hydrogeochemical controls on arsenic mobility in an arid inland basin, Southeast of Iran: The role of alkaline conditions and salt water intrusion. Environmental Pollution 249, 910-922. https://doi.org/10.1016/j.envpol.2019.03.082
  • Alkurdi, S.S.A., Herath, I., Bundschuh, J., Al-Juboori, R.A., Vithanage, M., Mohan, D., 2019. Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: What needs to be done in future research? Environment International 127, 52-69. https://doi.org/10.1016/j.envint.2019.03.012
  • Shakoor, M.B., Niazi, N.K., Bibi, I., Shahid, M., Saqib, Z.A., Nawaz, M.F., Shaheen, S.M., Wang, H., Tsang, D.C.W., Bundschuh, J., Ok, J.S., Rinklebe, J., 2019. Exploring the arsenic removal potential of various biosorbents from water. Environment International 123, 567-579. https://doi.org/10.1016/j.envint.2018.12.049
  • Ahmad, A. Cornelissen, E., van de Wetering, S., van Dijk, T., van Genuchten, C., Bundschuh, J., van der Wal, A., Bhattacharya, P., 2018. Arsenite removal in groundwater treatment plants by sequential Permanganate鈥旻erric treatment. Journal of Water Process Engineering 26, 221-229. https://doi.org/10.1016/j.jwpe.2018.10.014
  • Kumarathilaka, P., Seneweera, S., Meharg, A., Bundschuh, J., 2018. Arsenic accumulation in rice (Oryza sativa) is influenced by environment and genetic factors. Science of the Total Environment 642, 485-496. https://doi.org/10.1016/j.scitotenv.2018.06.030
  • Luong, V.T., Kurz, E.E.C, Hellriegel, U., Luu, T.L., Hoinkis, J., Bundschuh, J., 2018. Iron-based subsurface arsenic removal technologies by aeration: A review of the current state and future prospects. Water Research 133, 110-122. https://doi.org/10.1016/j.watres.2018.01.007
  • Kumarathilaka, P., Seneweera, S., Meharg, A., Bundschuh, J., 2018. Arsenic speciation dynamics in paddy rice soil-water environment: sources, physico-chemical, and biological factors – a review. Water Research 140, 403-414. https://doi.org/10.1016/j.watres.2018.04.034
  • Herath, I., Vithanage, M., Seneweera, S., Bundschuh, J., 2018. Thiolated arsenic in natural systems: what is current, what is new and what needs to be known. Environment International 115, 370-386. https://doi.org/10.1016/j.envint.2018.03.027
KTH Royal institute of technology - sweden
  • *Khan, K.M., Chakraborty, R., Bundschuh, J., Bhattacharya, P., Parvez, F., 2020. Health effects of arsenic exposure in Latin America: An overview of the past eight years of research. Science of The Total Environment 710, 136071. https://doi.org/10.1016/j.scitotenv.2019.136071
  • Ahmad, A., Heijnen, L., de Waal, L., Battaglia-Brunet, F., Oorthuizen, W., Pieterse, B., Bhattacharya, P. van der Wal, A., 2020. Mobility and redox transformation of arsenic during treatment of artificially recharged groundwater for drinking water production. Water Research, 115826. https://doi.org/10.1016/j.watres.2020.115826
  • Ahmad, A., Rutten, S., Eikelboom, M., de Waal, L., Bruning, H., Bhattacharya, P., van der Wal, A., 2020. Impact of phosphate, silicate and natural organic matter on the size of Fe (III) precipitates and arsenate co-precipitation efficiency in calcium containing water. Separation and Purification Technology 235, 116117. https://doi.org/10.1016/j.seppur.2019.116117
  • Ahmad, A., van der Wens, P., Baken, K., de Waal, L., Bhattacharya, P., Stuyfzand, P., 2020. Arsenic reduction to <1 碌g/L in Dutch drinking water. Environment International 134, 105253. https://doi.org/10.1016/j.envint.2019.105253
  • Aull贸n Alcaine, A., Schulz, C., Bundschuh, J., Jacks, G., Thunvik, R., Gustafsson, J.-P., M枚rth, C.-M., Sracek, O., Ahmad, A., Bhattacharya, P., 2020. Hydrogeochemical controls on the mobility of arsenic, fluoride and other geogenic co-contaminants in the shallow aquifers of northeastern La Pampa Province in Argentina. Science of The Total Environment, 136671. https://doi.org/10.1016/j.scitotenv.2020.136671
  • Bundschuh, J., Armienta, M.A., Morales-Simfors, N., Alam, M.A., L贸pez, D.L., Delgado Quezada, V., Dietrich, S., Schneider, J., Tapia, J., Sracek, O., Castillo, E., Marco Parra, L.-M., Altamirano Espinoza, M., L.R.G. Guilherme, Sosa, N.N., Niazi, N.K., Tomaszewska, B., Lizama Allende, K., Bieger, K., Alonso, D.L., Brand茫o, P.F.B., Bhattacharya, B., Litter, M.I., Ahmad, A., 2020. Arsenic in Latin America: New findings on source, mobilization and mobility in human environments in 20 countries based on decadal research 2010-2020. Critical Reviews in Environmental Science and Technology. https://doi.org/10.1080/10643389.2020.1770527
  • Quino-Lima, I., Ormachea Mu帽oz, M., Ramos Ramos, O.E., Quintanilla Aguirre, J., Maity, J.P., Ahmad, A., Bhattacharya, P., 2020. Hydrogeochemical contrasts in the shallow aquifer systems of the Lower Katari Basin and Southern Poop贸 Basin, Bolivian Altiplano. Journal of South American Earth Sciences, 102914. https://doi.org/10.1016/j.jsames.2020.102914
  • Maity, J.P., Chen, C.Y., Bhattacharya, P., Sharma, R.K., Ahmad, A., Patnaik, S., Bundschuh, J., 2020. Arsenic removal and mitigation options by advanced application of nano-technological and biological processes. Journal of Hazardous Materials, 123885. https://doi.org/10.1016/j.jhazmat.2020.123885
  • Mari帽o, E.E., Teij贸n 脕vila, G., Bhattacharya, P., Schulz, C.J., 2020. The occurrence of arsenic and other trace elements in groundwaters of the southwestern Chaco-Pampean plain, Argentina. Journal of South American Earth Sciences, 102547. https://doi.org/10.1016/j.jsames.2020.102547
  • Quino-Lima, I., Ramos-Ramos, O., Ormachea-Mu帽oz, M., Quintanilla-Aguirre, J., Duwig, C., Prakash Maity, J., Sracek, O., Bhattacharya, P., 2000. Spatial dependency of arsenic, antimony, boron and other trace elements in the shallow groundwater systems of the Lower Katari Basin, Bolivian Altiplano. Science of The Total Environment, 137505. https://doi.org/10.1016/j.scitotenv.2020.137505
  • Kumar, R., Patel, M., Singh, P., Bundschuh, J., Pittman Jr, C.U., Trakal, L., Mohan, D., 2019. Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: Methods, experience from, and options for Latin America. Science of The Total Environment 694, 133427. https://doi.org/10.1016/j.scitotenv.2019.07.233
  • Abiye, T.A., Bhattacharya, P., 2019. Arsenic concentration in groundwater: Archetypal study from South Africa. Groundwater for Sustainable Development 9, 100246. https://doi.org/10.1016/j.gsd.2019.100246
  • *Mukherjee, A., Gupta, S., Coomar, P., Fryar, A.E., Guillot, S., Verma, S., Bhattacharya, P., Bundschuh, J., Charlet, L., 2019. Plate tectonics influence on geogenic arsenic cycling: From primary sources to global groundwater enrichment. Science of The Total Environment 683, 793-807, https://doi.org/10.1016/j.scitotenv.2019.04.255
  • Litter, M.I., Ingallinella, A.M., Olmos, V., Savio, M., Difeo, G., Botto, L., Farf谩n Torres, E.M., Taylor, S., Frangie, S., Herkovits, H., Schalamuk, I., Gonz谩lez, M.J., Berardozzi, E., Garc铆a Einschlag, F.S., Bhattacharya, P., Ahmad, A., 2019. Arsenic in Argentina: Occurrence, human health, legislation and determination. Science of the Total Environment 676, 756-766. https://doi.org/10.1016/j.scitotenv.2019.04.262
  • Litter, M.I., Ingallinella, A.M., Olmos, V., Savio, M., Difeo, G., Botto, L., Farf谩n Torres, E.M., Taylor, S., Frangie, S., Herkovits, H., Schalamuk, I., Gonz谩lez, M.J., Berardozzi, E., Garc铆a Einschlag, F.S., Bhattacharya, P., Ahmad, A., 2019. Arsenic in Argentina: Technologies for arsenic removal from groundwater sources, investment costs and waste management practices. Science of The Total Environment 690, 778-789. https://doi.org/10.1016/j.scitotenv.2019.06.358
  • Kasiuliene, A., Carabante, I., Bhattacharya, P., Kumpiene, J., 2019. Hydrothermal carbonisation of peat-based spent sorbents loaded with metal (loid)s. Environmental Science and Pollution Research 23, 23730-23738. https://doi.org/1007/s11356-019-05653-6
  • Saha, R., Dey, N.C., Rahman, M., Bhattacharya, P., Rabbani, G.H., 2019. Geogenic arsenic and microbial contamination in drinking water sources: Exposure risks to the coastal population in Bangladesh. Frontiers in Environmental Science 7, 57. https://doi.org/10.3389/fenvs.2019.00057
  • Bhattacharjee, S., Saha, B., Saha, B. Uddin, Md.S., Panna, C.H., Bhattacharya, P., Saha, R., 2010. Groundwater governance in Bangladesh: Established practices and recent trends. Groundwater for Sustainable Development 8, 69-81. https://doi.org/10.1016/j.gsd.2018.02.006
  • Quino Lima, I., Ormachea Mu帽oz, M., Ramos Ramos, O.E., Bhattacharya, P., Quispe Choque, R., Quintanilla Aguirre, J., Sracek, O., 2019. Hydrochemical assessment with respect to arsenic and other trace elements in the Lower Katari Basin, Bolivian Altiplano. Groundwater for Sustainable Development 8, 281-293. https://doi.org/10.1016/j.gsd.2018.11.013
  • Ahmad, A., Bhattacharya, P., 2019. Environmental arsenic in a changing world. Groundwater for Sustainable Development 8, 169-171. https://doi.org/10.1016/j.gsd.2018.11.001
  • Ahmad, A., Bhattacharya, P., 2019. Arsenic in drinking water: Is 10 渭g/L a safe limit? Current Pollution Reports 5(1), 1-3. https://doi.org/10.1007/s40726-019-0102-7
  • Ahmad, A. Cornelissen, E., van de Wetering, S., van Dijk, T., van Genuchten, C., Bundschuh, B., van der Wal, A., Bhattacharya, P., 2018. Arsenite removal in groundwater treatment plants by sequential Permanganate鈥旻erric treatment. Journal of Water Process Engineering 26, 221-229. https://doi.org/10.1016/j.jwpe.2018.10.014
  • Kumar, M., Jain, V., Yamanaka, T., Li, Y., Bhattacharya, P., 2018. Contaminant transport and fate in freshwater systems鈥揑ntegrating the fields of geochemistry, geomorphology and nanotechnology. Groundwater for Sustainable Development 7, 336-342. https://doi.org/10.1016/j.gsd.2018.09.001
  • Annaduzzaman, M., Bhattacharya, P., Biswas, A., Hossain, M., Ahmed, K.M., van Halem, D., 2018. Arsenic and manganese in shallow tubewells: Validation of platform color as a screening tool in Bangladesh. Groundwater for Sustainable Development 6, 181-188. https://doi.org/10.1016/j.gsd.2017.11.008
  • Kasiulienea, A., Carabante, I., Bhattacharya, P., Caporale, A.G., Adamoc, P., Kumpiene, J., 2018. Removal of metal(oid)s from contaminated water using iron-coated peat sorbent. Chemosphere 198, 290-296. https://doi.org/10.1016/j.chemosphere.2018.01.139
  • Saha, R., Dey, N.C., Rahman, S., Galagedera, L., Bhattacharya, P., 2018. Exploring suitable sites for installing safe drinking water wells in coastal Bangladesh. Groundwater for Sustainable Development 7, 91-100. https://doi.org/10.1016/j.gsd.2018.03.002
Nanjing University - P. R. China
  • Zhang, H., Wang, Q., Xu, Q., Xu, W., Yang, S., Liu, X., Ma, L.Q., 2020. Sequential fractionation and plant uptake of As, Cu, and Zn in a contaminated riparian wetland. Environmental Pollution 268, 115734. https://doi.org/10.1016/j.envpol.2020.115734
  • Li, X., Sun, D., Feng, H., Chen, J., Chen, Y., Li, H., Cao, Y., Ma, L.Q., 2020. Efficient arsenate reduction in As-hyperaccumulator Pteris vittata are mediated by novel arsenate reductases PvHAC1 and PvHAC2. Journal of Hazardous Materials 399, 122895. https://doi.org/10.1016/j.jhazmat.2020.122895
  • Xu, W., Cao, Y., Chen, Y., Xiang, P., Liu, X., Ma, L.Q., 2020. Response to comment on “closely-related species of hyperaccumulating plants and their ability in accumulation of As, Cd, Cu, Mn, Ni, Pb and Zn”. Chemosphere, 128037. https://doi.org/10.1016/j.chemosphere.2020.128037
  • da Silva, E.B., Gao, P., Xu, M., Guan, D., Tang, X., Ma, L.Q., 2020. Background concentrations of trace metals As, Ba, Cd, Co, Cu, Ni, Pb, Se, and Zn in 214 Florida urban soils: Different cities and land uses. Environmental Pollution 264, 114737. https://doi.org/10.1016/j.envpol.2020.114737
  • He, S., Wang, X., Wu, X., Yin, Y., Ma, L.Q., 2020. Using rice as a remediating plant to deplete bioavailable arsenic from paddy soils. Environment International 141, 105799. https://doi.org/10.1016/j.envint.2020.105799
  • Xu, W., Xiang, P., Liu, X., Ma, L.Q., 2020. Closely-related species of hyperaccumulating plants and their ability in accumulation of As, Cd, Cu, Mn, Ni, Pb and Zn. Chemosphere 251, 126334. https://doi.org/10.1016/j.chemosphere.2020.126334
  • Hua, C.Y., Chen, J.X, Cao, Y., Li, H.B., Chen, Y., Ma, L.Q., 2020. Pteris vittata coupled with phosphate rock effectively reduced As and Cd uptake by water spinach from contaminated soil. Chemosphere 247, 125916. https://doi.org/10.1016/j.chemosphere.2020.125916
  • Chen, J., Garbinski, L.D., Rosen, B., Zhang, J., Xiang, P., Ma, L.Q., 2020. Organoarsenical compounds: Occurrence, toxicology and biotransformation. Critical Reviews in Environmental Science and Technology 50, 217-243. https://doi.org/10.1080/10643389.2019.1619375
  • Zhao, D., Wang, J., Yin, D., Li, M., Chen, X., Juhasz, A.L., Luo, J., Navas-Acien, A., Li, H., Ma, L.Q., 2020. Arsanilic acid contributes more to total arsenic than roxarsone in chicken meat from Chinese markets. Journal of Hazardous Materials 383, 121178. https://doi.org/10.1016/j.jhazmat.2019.121178
  • Abid, R., Manzoor, M., de Oliveira, L.M., da Silva, E., Rathinasabapathi, B., Rensing, C., Mahmood, S., Liu, X., Ma, L.Q., 2019. Interactive effects of As, Cd and Zn on their uptake and oxidative stress in As-hyperaccumulator Pteris vittata. Environmental Pollution 248, 756-762. https://doi.org/10.1016/j.envpol.2019.02.054
  • Chen,Y., Hua, C., Chen, J.X., Rathinasabapathi, B., Cao, Y., Ma, L.Q., 2019. Expressing arsenite antiporter PvACR3;1 in Rice (Oryza sativa) decreases inorganic arsenic content in rice grains. Environmental Science & Technology 53, 10062鈭10069. https://doi.org/10.1021/acs.est.9b02418
  • da Silva, E.B., Mussoline, W.A., Wilkie, A.C., Ma, L.Q., 2019. Arsenic removal and biomass reduction of As-hyperaccumulator Pteris vittata: Coupling ethanol extraction with anaerobic digestion. Science of The Total Environment 666:205鈥211. https://doi.org/10.1016/j.scitotenv.2019.02.161
  • da Silva a, E.B., Mussoline, W.A., Wilkie, A.C., Ma, L.Q., 2019. Anaerobic digestion to reduce biomass and remove arsenic from As-hyperaccumulator Pteris vittata. Environmental Pollution 250, 23-28. https://doi.org/10.1016/j.envpol.2019.03.117
  • Han, Y., Yin, D., Jia, M., Wang, S., Chen, Y., Rathinasabapathi, B., Chen, D., Ma, L.Q., 2019. Arsenic-resistance mechanisms in bacterium Leclercia adecarboxylata strain As3-1: Biochemical and genomic analyses. Science of The Total Environment 690, 1178鈥1189. https://doi.org/10.1016/j.scitotenv.2019.07.098
  • Jia, M., Tang, N., Cao, Y., Chen, Y., Han, Y.H., Ma, L.Q., 2019. Efficient arsenate reduction by As-resistant bacterium Bacillus strain PVR-YHB1-1: Characterization and genome analysis. Chemosphere 218, 1061-1070. https://doi.org/10.1016/j.chemosphere.2018.11.145
  • Li, H., Li, M., Zhao, D., Li, J., Li, S., Xiang, P., Juhasz, A.L., Ma, L.Q., 2019. Arsenic, lead, and cadmium bioaccessibility in contaminated soils: Measurements and validations. Critical Reviews in Environmental Science and Technology. https://doi.org/10.1080/10643389.2019.1656512
  • Li, H., Li, M., Zhao, D., Li, J., Li, S., Juhasz, A.L., Basta, N.T., Luo, Y., Ma, L.Q., 2019. Oral bioavailability of As, Pb, and Cd in contaminated soils, dust, and foods based on animal bioassays: A review. Environmental Science & Technology 53, 10545鈭10559. https://doi.org/10.1021/acs.est.9b0356
  • Li, K., Liu, Z., Shi, X., Wei, T., Ma, L.Q., Luo, J., 2020. Novel in situ method based on diffusive gradients in thin-films with lanthanum oxide nanoparticles for measuring As, Sb, and V and in waters. Journal of Hazardous Materials 383, 121196. https://doi.org/10.1016/j.jhazmat.2019.121196
  • Li, M., Wang, P., Wang, J., Chen, X., Zhao, D., Yin, D., Luo, J., Juhasz, A.L., Li, H., Ma, L.Q., 2019. Arsenic concentrations, speciation, and localization in 141 cultivated market mushrooms: Implications for arsenic exposure to humans. Environmental Science & Technology 53(1), 503鈭511. https://doi.org/10.1021/acs.est.8b05206
  • Manzoor, M., Abid, R., Rathinasabapathi, B., de Oliveira, L.M., da Silva, E., Deng, F., Rensing, C., Arshad, M., Gul, I., Xiang, P., Ma, L.Q., 2019. Metal tolerance of arsenic-resistant bacteria and their ability to promote plant growth of Pteris vittata in Pb-contaminated soil. Science of The Total Environment 660, 18鈥24. https://doi.org/10.1016/j.scitotenv.2019.01.013
  • Zhu, X., Li, M., Chen, X.Q., Wang, J., Li, L., Tu, C., Luo, Y.M., Li, H.B., Ma, L.Q., 2019. As, Cd, and Pb relative bioavailability in contaminated soils: Coupling mouse bioassay with UBM assay. Environment International 130, 104875. https://doi.org/10.1016/j.envint.2019.05.069
  • Cao, Y., Sun, D., Chen, J., Mei, H., Ai, H., Xu, G., Chen, Y., Ma, L.Q., 2018. Phosphate transporter PvPht1;2 enhances phosphorus accumulation and plant growth without impacting arsenic uptake in plants. Environmental Science & Technology 52, 3975鈭3981. https://doi.org/10.1021/acs.est.7b06674
  • da Silva, E.B., de Oliveira, L.M., Wilkie, A.C., Liu, Y., Ma, L.Q., 2018a. Arsenic removal from As-hyperaccumulator P. vittata biomass: Coupling extraction with precipitation. Chemosphere 193, 288-294. https://doi.org/10.1016/j.scitotenv.2019.02.161
  • da Silva, E.B., de Oliveira, L.M., Wilkie, A.C., Liu, Y., Ma, L.Q., 2018b. Arsenic removal by As-hyperaccumulator Pteris vittata from two contaminated soils: A 5-year study. Chemosphere 206, 736-741. https://doi.org/10.1016/j.chemosphere.2018.05.055
  • da Silva, E.B., Li, S., de Oliveira, L.M., Gress, J., Dong, X., Wilkie, A.C., Townsend, T., Ma, L.Q., 2018c. Metal leachability from coal combustion residuals under different pHs and liquid/solid ratios. Journal of Hazardous Materials 341, 66鈥74. https://doi.org/10.1016/j.jhazmat.2017.07.010
  • de Oliveira, L.M., Suchismita, D., da Silva, E.B., Gao, P., Vardanyan, L., Liu, Y., Ma, L.Q., 2018. Interactive effects of chromate and arsenate on their uptake and speciation in Pteris ensiformis. Plant and Soil 422, 515鈥526. https://doi.org/10.1007/s11104-017-3480-x
  • de Oliveira, L.M., Das, S., da Silva, E.B., Gao, P., Gress, J., Liu, Y., Ma, L.Q., 2018. Metal concentrations in traditional and herbal teas and their potential risks to human health. Science of The Total Environment 633, 649-657. https://doi.org/10.1016/j.scitotenv.2018.03.215
  • Fang, W., Williams, P.N., Fang, X., Amoah-Antwi, C., Yin, D., Li, G., Ma, L.Q., Luo, J., 2018. Field-scale heterogeneity and geochemical regulation of arsenic, iron, lead, and sulfur bioavailability in paddy soil. Environmental Science & Technology 52, 12098鈭12107. https://doi.org/10.1021/acs.est.8b01947
  • Hadayat, N., de Oliveira, L.M., da Silva, E., Han, L., Hussain, M., Liu, X., Ma, L.Q., 2018. Assessment of trace metals in five most-consumed vegetables in the US: Conventional vs. organic. Environmental Pollution 243, 292-300. https://doi.org/10.1016/j.envpol.2018.08.065
  • Liu, X., Feng, H.Y., Fu, J.W., Chen, Y., Liu, Y., Ma, L.Q., 2018. Arsenic-induced nutrient uptake in As-hyperaccumulator Pteris vittata and their potential role to enhance plant growth. Chemosphere 198, 425-431. https://doi.org/10.1016/j.chemosphere.2018.01.077
  • Wang, Z., Hou, L., Liu, Y., Wang, Y., Ma, L.Q., 2018. Metal contamination in a riparian wetland: Distribution, fractionation and plant uptake. Chemosphere 200, 587-593. https://doi.org/10.1016/j.chemosphere.2018.02.159
  • Zhao, D., Wang, J.-Y., Tang, N., Yin, D.-X., Luo, J., Xiang, P., Juhasz, A.L., Li, H.-B., Ma, L.Q., 2018. Coupling bioavailability and stable isotope ratio to discern dietary and nondietary contribution of metal exposure to residents in mining-impacted areas. Environment International 120:563鈥571. https://doi.org/10.1016/j.envint.2018.08.023
Nanjing agricultural university - p.r. china
  • Herath, I., Zhao, F.-J., Bundschuh, J., Wang, P., Wang, J., Ok, J.-S., Palansooriya, K.N., Vithanage, M., 2020. Microbe mediated immobilization of arsenic in the rice rhizosphere after incorporation of silica impregnated biochar composites. Journal of Hazardous Materials, 123096. https://doi.org/10.1016/j.jhazmat.2020.123096
  • Fischer, S., S谩nchez-Bermejo, E., Xu, X., Flis, P., Ramakrishna, P., Guerinot, M.L., Zhao, F.-J., Salt, D.E., 2020. Targeted expression of the arsenate reductase HAC1 identifies cell-type specificity of arsenic metabolism and transport in plant roots. Journal of Experimental Botany, 465. https://doi.org/10.1093/jxb/eraa465
  • Tang, Z., Wang, Y., Gao, A., Ji, Y., Yang, N., Wang, P., Tang, Z., Zhao, F.-J., 2020. Dimethylarsinic acid is the causal agent inducing rice straighthead disease. Journal of Experimental Botany 71(18), 5631鈥5644. https://doi.org/10.1093/jxb/eraa
  • Tang, Z., Zhao, F.-J., 2000. The roles of membrane transporters in arsenic uptake, translocation and detoxification in plants. Critical Reviews in Environmental Science and Technology. https://doi.org/10.1080/10643389.2020.1795053
  • Wang, C., Zheng, L., Tang, Z., Sun, S., Ma, J.F., Huang, X.-Y., Zhao, F.-J., 2020. OASTL-A1 functions as a cytosolic cysteine synthase and affects arsenic tolerance in rice. Journal of Experimental Botany 71(12), 3678鈥3689. https://doi.org/10.1093/jxb/eraa113
  • Zhang, J., Chai, C.-W., ThomasArrigo, L.K., Zhao, S.-C., Kretzschmar, R., Zhao, F.-J., 2020. Nitrite accumulation is required for microbial anaerobic iron oxidation, but not for arsenite oxidation, in two heterotrophic denitrifiers. Environ. Sci. Technol. 54(7), 4036鈥4045. https://doi.org/10.1021/acs.est.9b06702
  • Yin, D.-X., Fang, W., Guan, D.-X. Williams, P.N, Moreno-Jimenez, M.E., Gao, Y., Zhao, F.-J., Ma, L.Q., Zhang, H., Luo, J., 2020. Localized intensification of arsenic release within the emergent rice rhizosphere. Environ. Sci. Technol. 54(6), 3138鈥3147. https://doi.org/10.1021/acs.est.9b04819
  • Zhao, F.J., Wang, P., 2020. Arsenic and cadmium in rice and mitigation strategies. Plant and Soil. https://doi.org/10.1007/s11104-019-04374-6
  • Xie, W.Y., Zou, X., Liu, D.Y., Shen, Q.R., Zhao, F.J., 2019. Dynamics of metal(loid) resistance genes driven by succession of bacterial community during manure composting. Environmental Pollution 255, 113276. https://doi.org/10.1016/j.envpol.2019.113276
  • Chen, C., Li, L.Y., Huang, K., Zhang, J., Xie, W.Y., Lu, Y.H., Dong, X.Z., Zhao, F.J., 2019 Sulfate-reducing bacteria and methanogens are involved in arsenic methylation and demethylation in paddy soils. The ISME Journal 13, 2523鈥2535. https://doi.org/10.1038/s41396-019-0451-7
  • Xu, X.W., Wang, P., Zhang, J., Chen, C., Wang, Z.P., Kopittke, P.M., Kretzschmar, R., Zhao, F.J., 2019. Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction. Environmental Pollution 251, 952-960. https://doi.org/10.1016/j.envpol.2019.05.086
  • Tang, Z., Chen, Y., Miller, A.J., Zhao, F.J., 2019. The C-type ATP-binding cassette transporter OsABCC7 is involved in the root-to-shoot translocation of arsenic in rice. Plant and Cell Physiology 60, 1525鈥1535. https://doi.org/10.1093/pcp/pcz054
  • Huang, K., Peng, H.Y., Gao, F., Liu, Q.Q., Lu, X.F., Shen, Q.R., Le, X.C., Zhao, F.J. 2019. Biotransformation of arsenic-containing roxarsone by an aerobic soil bacterium Enterobacter CZ-1. Environmental Pollution 247, 482-487. https://doi.org/10.1016/j.envpol.2019.01.076
  • Wang, M., Tang, Z., Chen, X.P., Wang, X., Zhou, W.X., Tang, Z., Zhang, J., Zhao, F.J., 2019. Water management impacts the soil microbial communities and total arsenic and methylated arsenicals in rice grains. Environmental Pollution 247, 736-744. https://doi.org/10.1016/j.envpol.2019.01.043
  • Wang, P.T., Chen, X., Xu, X., Lu, C., Zhang, W., Zhao, F.J., 2018. Arabidopsis ARSENATE INDUCED CHLOROSIS 1/TRANSLOCON AT THE OUTER ENVELOPE MEMBRANE OF CHLOROPLASTS 132 protects chloroplasts from arsenic toxicity. Plant Physiology 178, 1568-1583. https://doi.org/10.1104/pp.18.01042
  • Yang, M., Lu, K., Zhao, F.J., Xie, W.B., Ramakrishna, P., Wang, G.Y., Du, Q.Q., Liang, L.M., Sun, C.J., Zhao, H., Zhang, Z.Y., Liu, Z.H., Tian, J.J., Huang, X.Y., Wang, W.S., Dong, H.X., Hu, J.T., Ming, L.C., Xing, Y.Z., Wang, G.W., Xiao, J.H., Salt, D.E., Lian, X.M., 2018. Genome-wide association studies reveal the genetic basis of ionomic variation in rice. Plant Cell 30, 2720-2740. https://doi.org/10.1105/tpc.18.00375
  • Wang, P., Xu, X., Tang, Z., Zhang, W.W., Huang, X.Y., Zhao, F.J., 2018. OsWRKY28 regulates phosphate and arsenate accumulation, root system architecture and fertility in rice. Frontiers in Plant Science 9, 1330. https://doi.org/10.3389/fpls.2018.01330
  • Sun, S.K., Chen, Y., Che, J., Konishi, N., Tang, Z., Miller, A.J., Ma, J.F., Zhao, F.J., 2018. Decreasing arsenic accumulation in rice by overexpressing OsNIP1;1 and OsNIP3;3 through disrupting arsenite radial transport in roots. New Phytologist 219, 641鈥653. https://doi.org/10.1111/nph.15190
  • Chen, H.P., Tang, Z., Wang, P., Zhao, F.J., 2018. Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice. Environmental Pollution 238, 482-490. https://doi.org/10.1016/j.envpol.2018.03.048
  • Yang, Y.P., Zhang, H.M., Yuan, H.Y., Duan, G.L., Jin, D.C. Zhao, F.J., Zhu, Y.G., 2018. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. Environmental Pollution 236, 598-608. https://doi.org/10.1016/j.envpol.2018.01.099
  • Huang, K., Xu, Y., Packianathan, C., Gao, F., Chen, C., Zhang, J., Shen, Q.R., Rosen, B.P., Zhao, F.J., 2018. Arsenic methylation by a novel ArsM As(III) S-adenosylmethionine methyltransferase that requires only two conserved cysteine residues. Molecular Microbiology 107, 265鈥276. https://doi.org/10.1111/mmi.13882
  • Wang, C.C., Na, G.N., Sanchez Bermejo, E., Chen, Y., Banks, J.A., Salt, D.E., Zhao, F.J., 2018. Dissecting the components controlling root-to-shoot arsenic translocation in Arabidopsis thaliana. New Phytologist. 217, 206鈥218. https://doi.org/1111/nph.14761
Korea University - South Korea
  • Kumarathilaka, P., Bundschuh, J., Seneweera, S., Ok, J.S., 2020. An integrated approach of rice hull biochar-alternative water management as a promising tool to decrease inorganic arsenic levels and to sustain essential element contents in rice. Journal of Hazardous Materials, 124188. https://doi.org/10.1016/j.jhazmat.2020.124188
  • Herath, I., Zhao, F.-J., Bundschuh, J., Wang, P., Wang, J., Ok, J.-S., Palansooriya, K.N., Vithanage, M., 2020. Microbe mediated immobilization of arsenic in the rice rhizosphere after incorporation of silica impregnated biochar composites. Journal of Hazardous Materials, 123096. https://doi.org/10.1016/j.jhazmat.2020.123096
  • Weerasundara, L., Gabriele, B., Figoli, A., Ok, Y.S., Bundschuh, J., 2020. Hydrogels: Novel materials for contaminant removal in water鈥擜 review. Critical Reviews in Environmental Science and Technology, 1-45. https://doi.org/10.1080/10643389.2020.1776055
  • Weerasundara, L., Ok, J.S., Bundschuh, J., 2020. Selective removal of arsenic in water 鈥 A critical review. Environmental Pollution, 115668. https://doi.org/10.1016/j.envpol.2020.115668
  • Wang, L., Chen, L., Guo, B., Tsang, D.C.W., Huang, L., Ok, Y.S., Mechtcherine, V., 2020. Red mud-enhanced magnesium phosphate cement for remediation of Pb and As contaminated soil. Journal of Hazardous Materials 400, 123317. https://doi.org/10.1016/j.jhazmat.2020.123317
  • Li, Z., Wang, L., Wu, J., Xu, Y., Wang, F., Tang, X., Xu, J., Ok, J.S., Meng, J., Liu, Y., 2020. Zeolite-supported nanoscale zero-valent iron for immobilization of cadmium, lead, and arsenic in farmland soils: Encapsulation mechanisms and indigenous microbial responses. Environmental Pollution 260, 114098. https://doi.org/10.1016/j.envpol.2020.114098
  • Rinklebe, R., Shaheen, S.M., El-Naggar, A., Wang, H., Du Laing, G., Alessi, D.S., Ok, Y.S., 2000. Redox-induced mobilization of Ag, Sb, Sn, and Tl in the dissolved, colloidal and solid phase of a biochar-treated and un-treated mining soil. Environment International 140, 105754. https://doi.org/10.1016/j.envint.2020.105754
  • Shaheen, S.M., El-Naggar, A., Antoniadis, V., Moghanm, F.S., Zhang, Z., Tsang, D.C.W., Ok Y.S., Rinklebe, J.,2020. Release of toxic elements in fishpond sediments under dynamic redox conditions: Assessing the potential environmental risk for a safe management of fisheries systems and degraded waterlogged sediments. Journal of Environmental Management 255, 109778. https://doi.org/10.1016/j.jenvman.2019.109778
  • Kumarathilaka, P., Seneweera, S., Ok, Y.S., Meharg, A.A., Bundschuh, J. 2020. Mitigation of arsenic accumulation in rice: An agronomical, physico-chemical, and biological approach鈥揂 critical review. Critical Reviews in Environmental Science and Technology 50(1), 31-71. https://doi.org/10.1080/10643389.2019.1618691
  • El-Naggar, A., Lee, M.-H., Hur, J., Lee, Y.H., Igalavithana, A.D., Shaheen, S.M., Ryu, C., Rinklebe, J., Tsang, D.C.W., Ok, Y.S. 2020. Biochar-induced metal immobilization and soil biogeochemical process: An integrated mechanistic approach. Science of the Total Environment 698, 134112. https://doi.org/10.1016/j.scitotenv.2019.134112
  • Wang, L., Chen, L., Tsang, D.C.W., Zhou, Y., Rinklebe, J., Song, H., Kwon, E.E., Baek, K., Ok, Y.S., 2019. Mechanistic insights into red mud, blast furnace slag, or metakaolin-assisted stabilization/solidification of arsenic-contaminated sediment. Environment International 133, 105247. https://doi.org/10.1016/j.envint.2019.105247
  • Zhu, X., Wang, X., Ok, Y.S., 2019. The application of machine learning methods for prediction of metal sorption onto biochars. Journal of Hazardous Materials 378, 120727. https://doi.org/10.1016/j.jhazmat.2019.06.004
  • Zhang, Y., Fan, J., Fu, M., Ok, Y.S., Hou, Y., Cai, C. 2019. Adsorption antagonism and synergy of arsenate(V) and cadmium(II) onto Fe-modified rice straw biochars. Environmental Geochemistry and Health 41(4), 1755-1766. https://doi.org/10.1007/s10653-017-9984-8
  • Awad, Y.M., Vithanage, M., Niazi, N.K., Rizwan, M., Rinklebe, J., Yang, J.E., Ok, Y.S., Lee, S.S., 2019. Potential toxicity of trace elements and nanomaterials to Chinese cabbage in arsenic- and lead-contaminated soil amended with biochars. Environmental Geochemistry and Health 41(4), 1777-1791. https://doi.org/10.1007/s10653-017-9989-3
  • Cho, D.-W., Yoon, K., Ahn, Y., Sun, Y., Tsang, D.C.W., Hou, D., Ok, Y.S., Song, H., 2019. Fabrication and environmental applications of multifunctional mixed metal-biochar composites (MMBC) from red mud and lignin wastes. Journal of Hazardous Materials 374, 412-419. https://doi.org/10.1016/j.jhazmat.2019.04.071
  • Kumarathilaka, P., Seneweera, S., Ok, Y.S., Meharg, A., Bundschuh, J., 2019. Arsenic in cooked rice foods: Assessing health risks and mitigation options. Environment International 127, 584-591. https://doi.org/10.1016/j.envint.2019.04.004
  • Antoniadis, V., Shaheen, S.M., Levizou, E., Shahid, M., Niazi, N.K., Vithanage, M., Ok, Y.S., Bolan, N., Rinklebe, J. 2019. A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment? – A review. Environment International 127, 819-847. https://doi.org/10.1016/j.envint.2019.03.039
  • Igalavithana, A.D., Kim, K.-H., Jung, J.-M., Heo, H.-S., Kwon, E.E., Tack, F.M.G., Tsang, D.C.W., Jeon, Y.J., Ok, Y.S., 2019. Effect of biochars pyrolyzed in N2 and CO2, and feedstock on microbial community in metal(loid)s contaminated soils. Environment International 126, 791-801. https://doi.org/10.1016/j.envint.2019.02.061
  • Wang, L., Cho, D.-W., Tsang, D.C.W., Cao, X., Hou, D., Shen, Z., Alessi, D.S., Ok, Y.S., Poon, C.S., 2019. Green remediation of As and Pb contaminated soil using cement-free clay-based stabilization/solidification. Environment International 126, 336-345. https://doi.org/10.1016/j.envint.2019.02.057
  • El-Naggar, A., Shaheen, S.M., Hseu, Z.-Y., Wang, S.-L., Ok, Y.S., Rinklebe, J., 2019. Release dynamics of As, Co, and Mo in a biochar treated soil under pre-definite redox conditions. Science of the Total Environment 657, 686-695. https://doi.org/10.1016/j.scitotenv.2018.12.026
  • Jin, Y., O’Connor, D., Ok, Y.S., Tsang, D.C.W., Liu, A., Hou, D., 2019. Assessment of sources of heavy metals in soil and dust at children’s playgrounds in Beijing using GIS and multivariate statistical analysis. Environment International 124, 320-328. https://doi.org/10.1016/j.envint.2019.01.024
  • Sun, Y., Yu, I.K.M., Tsang, D.C.W., Cao, X., Lin, D., Wang, L., Graham, N.J.D., Alessi, D.S., Kom谩rek, M., Ok, Y.S., Feng, Y., Li, X.-D., 2019. Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater. Environment International 124, 521-532. https://doi.org/10.1016/j.envint.2019.01.047
  • Shakoor, M.B., Niazi, N.K., Bibi, I., Shahid, M., Saqib, Z.A., Nawaz, M.F., Shaheen, S.M., Wang, H., Tsang, D.C.W., Bundschuh, J., Ok, Y.S., Rinklebe, J., 2019. Exploring the arsenic removal potential of various biosorbents from water. Environment International 123, 567-579. https://doi.org/10.1016/j.envint.2018.12.049
  • Shakoor, M.B., Niazi, N.K., Bibi, I., Shahid, M., Sharif, F., Bashir, S., Shaheen, S.M., Wang, H., Tsang, D.C.W., Ok, Y.S., Rinklebe, J., 2018. Arsenic removal by natural and chemically modified water melon rind in aqueous solutions and groundwater. Science of the Total Environment 645, 1444-1455. https://doi.org/10.1016/j.scitotenv.2018.07.218
  • Yang, X., Igalavithana, A.D., Oh, S.-E., Nam, H., Zhang, M., Wang, C.-H., Kwon, E.E., Tsang, D.C.W., Ok, Y.S., 2018. Characterization of bioenergy biochar and its utilization for metal/metalloid immobilization in contaminated soil. Science of the Total Environment 640-641, 704-713. https://doi.org/10.1016/j.scitotenv.2018.05.298
  • Igalavithana, A.D., Yang, X., Zahra, H.R., Tack, F.M.G., Tsang, D.C.W., Kwon, E.E., Ok, Y.S., 2018. Metal(loid) immobilization in soils with biochars pyrolyzed in N2 and CO2 Science of the Total Environment 630, 1103-1114. https://doi.org/10.1016/j.scitotenv.2018.02.185
  • Niazi, N.K., Bibi, I., Shahid, M., Ok, Y.S., Shaheen, S.M., Rinklebe, J., Wang, H., Murtaza, B., Islam, E., Farrakh Nawaz, M., L眉ttge, A., 2018. Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: Investigating arsenic fate using integrated spectroscopic and microscopic techniques. Science of the Total Environment 621, 1642-1651. https://doi.org/10.1016/j.scitotenv.2017.10.063
  • Sun, Y., Lei, C., Khan, E., Chen, S.S., Tsang, D.C.W., Ok, Y.S., Lin, D., Feng, Y., Li, X.-D., 2018. Aging effects on chemical transformation and metal(loid) removal by entrapped nanoscale zero-valent iron for hydraulic fracturing wastewater treatment. Science of the Total Environment 615, 498-507. https://doi.org/10.1016/j.scitotenv.2017.09.332
  • Kameda, K., Hashimoto, Y., Ok, Y.S., 2018. Stabilization of arsenic and lead by magnesium oxide (MgO) in different seawater concentrations. Environmental Pollution 233, 952-959. https://doi.org/10.1016/j.envpol.2017.09.067
  • Beiyuan, J., Lau, A.Y.T., Tsang, D.C.W., Zhang, W., Kao, C.-M., Baek, K., Ok, Y.S., Li, X.-D., 2018. Chelant-enhanced washing of CCA-contaminated soil: Coupled with selective dissolution or soil stabilization. Science of the Total Environment 612, 1463-1472. https://doi.org/10.1016/j.scitotenv.2017.09.015
  • Niazi, N.K., Bibi, I., Shahid, M., Ok, Y.S., Burton, E.D., Wang, H., Shaheen, S.M., Rinklebe, J., L眉ttge, A., 2018. Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination. Environmental Pollution 232, 31-41. https://doi.org/10.1016/j.envpol.2017.09.051
University of Wuppertal - Germany
  • Amen, R., Bashir,H., Bibi, I., Shaheen, S.M., Niazi, N.K., Shahid, M., Hussain, M.M., Antoniadis, V., Shakoor, M.B., Al-Solaimani, S.G., Wang, H., Bundschuh, H., Rinklebe, J., 2020. A critical review on arsenic removal from water using biochar-based sorbents: The significance of modification and redox reactions. Chemical Engineering Journal, 125195. https://doi.org/10.1016/j.cej.2020.125195
  • Herath, I., Kumarathilaka, P., Bundschuh, J., Marchuk, A., Rinklebe, J., 2020. A fast analytical protocol for simultaneous speciation of arsenic by Ultra-High Performance Liquid Chromatography (UHPLC) hyphenated to Inductively Coupled Plasma Mass. Talanta 208, 120457. https://doi.org/10.1016/j.talanta.2019.120457
  • Amen, R., Bashir, H., Bibi, I., Shaheen, S.M., Niazi, N.K., Shahid, M., Hussain, M.M., Antoniadis, V., Shakoor, M.B., Al-Solaimani, S.G., Wang, H., Bundschuh, H., Rinklebe, J., 2020. A critical review on arsenic removal from water using biochar-based sorbents: The significance of modification and redox reactions. Chemical Engineering Journal, 125195. https://doi.org/10.1016/j.cej.2020.125195
  • Wen, E., Yang, X., Chen, H., Shaheen, SM, Sarkar, B., Xu, S., Song, H., Liang, Y., Rinklebe, J., Hou, D., Li, Y., Wu, F., Poho艡el媒, Wong, J.W.C. Wang, H., 2020. Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil. Journal of Hazardous Materials, 124344. https://doi.org/10.1016/j.jhazmat.2020.124344
  • Hussain, M.M., Wang, J., Bibi, I., Shahid, M., Niazi, N.K., Iqbal, J., Mian, I.A., Shaheen, S.M., Bashir, S., Shah, N.S., Hina, K., Rinklebe, J., 2020. Arsenic speciation and biotransformation pathways in the aquatic ecosystem: The significance of algae. Journal of Hazardous Materials 403, 124027. https://doi.org/10.1016/j.jhazmat.2020.124027
  • Rinklebe, R., Shaheen, S.M., El-Naggar, A., Wang, H., Du Laing, G., Alessi, D.S., Ok, Y.S., 2000. Redox-induced mobilization of Ag, Sb, Sn, and Tl in the dissolved, colloidal and solid phase of a biochar-treated and un-treated mining soil. Environment International 140, 105754. https://doi.org/10.1016/j.envint.2020.105754
  • Mensah, A.K., Marschner, B., Shaheen, S.M., Wang, J., Wang, S.-L., Rinklebe, J., 2020. Arsenic contamination in abandoned and active gold mine spoils in Ghana: Geochemical fractionation, speciation, and assessment of the potential human health risk. 2020. Environmental Pollution, 114116. https://doi.org/10.1016/j.envpol.2020.114116
  • Palansooriya, K.N., Shaheen, S.M., Chen, S.S., Tsang, D.C.W., Hashimoto, Y., Hou, D., Bolan, N.S., Rinklebe, J., Ok, Y.S., 2020. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environment International 134, 105046. https://doi.org/10.1016/j.envint.2019.105046
  • Shaheen, S.M., El-Naggar, A., Antoniadis, V., Moghanm, F.S., Zhang, Z., Tsang, D.C.W., Ok, Y.S., Rinklebe, J., 2020. Release of toxic elements in fishpond sediments under dynamic redox conditions: Assessing the potential environmental risk for a safe management of fisheries systems and degraded waterlogged sediments. Journal of Environmental Management 255, 109778. https://doi.org/10.1016/j.jenvman.2019.109778
  • Antoniadis, V., Golia, E.E., Liu, Y., Wang, S., Shaheen, S.M., Rinklebe, J., 2019. Soil and maize contamination by trace elements and associated health risk assessment in the industrial area of Volos, Greece. Environment International 124, 78-88. https://doi.org/10.1016/j.envint.2018.12.053
  • Antoniadis, V., Shaheen, S.M., Levizou, E., Shahid, M., Niazi, N.K., Vithanage, M., Ok, Y.S., Bolan, N., Rinklebe, J., 2019. A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment? 鈥 A review. Environment International 127, 819-847. https://doi.org/10.1016/j.envint.2019.03.039
  • El-Naggar, A., Shaheen, S.M., Hseu, Z., Wang, S-L., Ok, Y.S., Rinklebe, J., 2019. Release dynamics of As, Co, and Mo in a biochar treated soil under pre-definite redox conditions. Science of the Total Environment 657, 686-695. https://doi.org/10.1016/j.scitotenv.2018.12.026
  • Rinklebe, J., Antoniadis, V., Shaheen, S.M., Rosche, O., Altermann, M., 2019. Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environment International 126, 76-88. https://doi.org/10.1016/j.envint.2019.02.011
  • Shaheen, S.M., Abdelrazik, M., Elthoth, M., Elhabashy, N., Hamzah, A., Mohamed, R., Moghanm, F.S., Wang, J., Rinklebe, J., 2019. Potentially toxic elements in saltmarsh sediments and common reed (Phragmites australis) of Burullus coastal lagoon at north Nile Delta, Egypt: A survey and risk assessment. Science of the Total Environment 649, 1237-1249. https://doi.org/10.1016/j.scitotenv.2018.08.359
  • Shakoor, M.B., Niazi, N.K., Bibi, I., Shahid, M., Saqib, Z.A., Muhammad, M.F., Shaheen, S.M., Wang, H., Tsang, D., Bundschuh, J., Ok, Y., Rinklebe, J., 2019. Exploring the arsenic removal potential of various biosorbents from water. Environment International 123, 567-579. https://doi.org/10.1016/j.envint.2018.12.049
  • Niazi, N.K., Bibi, I., Shahid, M., Ok, Y.S., Burton, E.D., Wang, H., Shaheen, S.M., Rinklebe, J., L眉tte, A., 2018. Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination. Environmental Pollution 232, 31-41. https://doi.org/10.1016/j.envpol.2017.09.051
  • Niazi, N.K., Bibi, I., Shahid, M., Ok, Y.S., Shaheen, S.M., Rinklebe, J., Wang, H., Murtaza, B., Islam, E., Nawaz, M.F., L眉ttge, A., 2018. Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: Investigating arsenic fate using integrated spectroscopic and microscopic techniques. Science of the Total Environment 332, 100-108. https://doi.org/10.1016/j.scitotenv.2017.10.063
  • Shaheen, S.M., Ali, R.A., Abowaly, M.E., Rabie, A.E.-M., Abbasy, N.E.E., Rinklebe, J., 2018. Assessing the potential mobilization of As, Cr, Mo, and Se in Egyptian lacustrine and calcareous soils using sequential extraction and biogeochemical microcosm techniques. Journal of Geochemical Exploration 191, 28-42. https://doi.org/10.1016/j.scitotenv.2017.10.063
Queen's university belfast - united kingdom
  • Shi, Z., Carey, M., Davidson, E., Meharg, C., Meharg, A.A., 2020. Avoiding rice鈥慴ased cadmium and聽inorganic arsenic in聽infant diets through selection of聽products low in聽concentration of聽these contaminants. Exposure and Health. https://doi.org/10.1007/s12403-020-00376-3
  • Pogoson, E., Carey, M., Meharg, C., Meharg, A.A., 2021. Reducing the cadmium, inorganic arsenic and dimethylarsinic acid content of rice through food-safe chemical cooking pre-treatment. Food Chemistry 338, 127842. https://doi.org/10.1016/j.foodchem.2020.127842
  • de Moraes, N.V., Carey, M., Neville, C.E., Cruise, S., McGuinness, B., Kee, F., Young, I.S., Woodside, J.V., Meharg, A.A., 2020. Water dilutes and alcohol concentrates urinary arsenic species when food is the dominant source of exposure. Exposure and Health. https://doi.org/10.1007/s12403-019-00329-5
  • Carey, M., Meharg, C., Williams, P., Marwa, E., Jiujin, X., Gomes Farias, J., De Silva, P.M.C.S., Signes-Pastor, A., Lu, Y., Nicoloso, F.T., Savage, L., Campbell, K., Elliott, C., Adomako, E., Green, A.J., Moreno-Jimenez, E., Carbonell-Barrachina, 脕.A., Triwardhani, E.A., Pandianga, F.I., Haris, P.I., Lawgali, Y.F., Sommella, A., Pigna, M., Brabet, C., Montet, D., Njira, K., Watts, M.J., Meharg, A.A., 2019. Global Sourcing of low-inorganic arsenic rice grain. Exposure and Health. https://doi.org/10.1007/s12403-019-00330-y
  • Yao, L., Carey, M.P., Zhong, J., Bai., C, Zhou, C., Meharg, A.A., 2019. Soil attributes regulates assimilation of roxarsone metabolites by rice (Oryza sativa). Ecotoxicology and Environmental Safety, 184, 109660. https://doi.org/10.1016/j.ecoenv.2019.109660
  • Savage, L., Carey, M., Williams, P.N., Meharg, A.A., 2019. Maritime deposition of organic and inorganic arsenic. Environmental Science & Technology 53(13), 7288-7295. https://doi.org/10.1021/acs.est.8b06335
  • Signes-Pastor, A.J., Vioque, J., Navarrete-Munoz, E.M., Carey, M., Garcia-Villarino, M., Fernanes-Somoano, A., Tardon, A., Santa-Marina, L., Irizar, A., Casas, M., Guxens, M., Llop, S., Soler-Blasco, R., Gacria-de-la-Hera, M., Karagas, M.R., Meharg, A.A., 2019. Inorganic arsenic exposure and neuropsychological development of children of 4-5 years of age living in Spain. Environmental Research 174, 135-142. https://doi.org/10.1016/j.envres.2019.04.028
  • Rahman, H., Carey, M., Hossain, M., Savage, L., Islam, M.R., Meharg, A.A., 2019. Modifying the parboiling of rice to remove inorganic arsenic, while fortifying with cadmium. Environmental Science Technology 53, 5249-5255. https://doi.org/10.1021/acs.est.8b06548
  • Afroz, H., Su, S.M., Carey, M., Meharg, A.A., Meharg, C., 2019. Inhibition of microbial methylation via arsM in the rhizosphere: arsenic speciation in the soil to plant continuum. Environmental Science & Technology 53, 3451-3463. https://doi.org/10.1021/acs.est.8b07008
  • Nachman, K.E., Punshon, T., Rardin, L., Signes-Pastor, A.J., Murray, C.J., Jackson, B.P., Guerinot, M.L., Burke, T.A., Chen, C.Y., Ahsan, H., Argos, M., Cottingham, K.L., Cubadda, F., Ginsberg, G.L., Goodale, B.C., Kurzius-Spencer, M., Meharg, A.A., Miller, M.D., Nigra, A.E., Pendergrast, C.B., Raab, A., Reimer, K., Scheckel, K.G., Schwerdtle, T., Taylor, V.F., Tokar, E.J., Warczak, T.M., Karagas, M.R., 2018. Opportunities and challenges for dietary arsenic intervention. Environmental Health Perspectives, 084503. https://doi.org/10.1289/EHP3997
  • Savage, L., Carey, M., Williams, P.N., Meharg, A.A., 2018. Biovolatilization of arsenic as arsines from seawater. Environmental Science & Technology 52(7), 3968-3974. https://doi.org/10.1021/acs.est.7b06456
  • Signes Pastor, A., Cottingham, K., Carey, M., Sayarath, V., Palys, T., Meharg, A.A., Folt, C.L., Karagas, M., 2018. Infants鈥 dietary arsenic exposure during transition to solid food. Scientific Reports 8, 7114. https://doi.org/10.1038/s41598-018-25372-1
  • Carey, M., Donaldson, E., Signes-Pastor, A.J., Meharg, A.A., 2018. Dilution of rice with other gluten free grains to lower inorganic arsenic in foods for young children in response to European Union regulations. PLOSone 13, e01947000. https://doi.org/10.1371/journal.pone.0194700
  • Punshon, T., Carey, A.-M., Ricachenevsky, F.K., Meharg, A.A., 2018. Elemental distribution in developing rice grains and the effect of flag-leaf arsenate exposure. Environmental Experimental Botany 149, 51-58. https://doi.org/10.1016/j.envexpbot.2018.02.007
  • Chowdhury, M.T.A., Deacon, C., Steel, E., Huq, S.M.I., Paton, G.I., Price, A.H., Williams, P.N., Meharg, A.A., Norton, G.J., 2018. Physiographical variability in arsenic dynamics in Bangladeshi soils. Science of the Total Environment 612, 1365-1372. https://doi.org/10.1016/j.scitotenv.2017.09.030
Jawaharlal Nehru University - India
  • Singh, P., Sarswat, A., Pittman Jr., C.U., Mlsna, T., Mohan, D., 2020. Sustainable low-concentration arsenite [As(III)] removal in single and multicomponent systems using hybrid iron oxide-biochar nanocomposite adsorbents – A mechanistic study. ACS Omega 5 (6), 2575鈥2593. https://doi.org/10.1021/acsomega.9b02842
  • Kumar, R., Kang, C.-U., Mohan, D., Khan, M.A., Lee, J.-H., Lee, S.S., Jeon, B.-H., 2020. Waste sludge derived adsorbents for arsenate removal from water. Chemosphere 239, 124832. https://doi.org/10.1016/j.chemosphere.2019.124832
  • Navarathna, C.M., Karunanayake, A.G., Gunatilake, S.R., Pittman Jr., C.U., Perez, F., Mohan, D., Mlsna, T., 2019. Removal of arsenic(III) from water using magnetite precipitated onto Douglas fir biochar. Journal of Environmental Management 250, 109429. https://doi.org/10.1016/j.jenvman.2019.109429
  • Kumar, R., Patel, M., Singh, P., Bundschuh, J., Pittman Jr, C.U., Trakal, L., Mohan, D., 2019. Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: Methods, experience from, and options for Latin America. Science of The Total Environment 694, 133427. https://doi.org/10.1016/j.scitotenv.2019.07.233
  • Alkurdi, S.S.A., Herath, I., Bundschuh, J., Al-Juboori, R.A., Vithanage, M., Mohan, D. (2019) Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: What needs to be done in future research? Environment International 127, 52-69. https://doi.org/10.1016/j.envint.2019.03.012
  • Dou, X., Wang, G.-C., Zhu, M., Liu, F., Li, W., Mohan, D., Pittman Jr., C.U., 2018. Identification of Fe and Zr oxide phases in an iron-zirconium binary oxide and arsenate complexes adsorbed onto their surfaces. Journal of Hazardous Materials 353, 340-347. https://doi.org/10.1016/j.jhazmat.2018.04.004
Eawag - switzerland
  • Hug, S.J., Winkel, L.H.E., Voegelin, A., Berg, B., Johnson, A.C,. 2020. Arsenic and other geogenic contaminants in groundwater – A global challenge. Chimia 74(7), 524-537. https://doi.org/10.2533/chimia.2020.524
  • Wu, R., Podgorski, J., Berg, M.A., Polya D.A., 2020. Geostatistical model of the spatial distribution of arsenic in groundwaters in Gujarat State, India. Environmental Geochemistry and Health, 1-16. https://doi.org/10.1007/s10653-020-00655-7
  • Podgorski, J., Berg, M., 2020. Global threat of arsenic in groundwater. Science 368(6493), 845-850. https://doi.org/10.1126/science.aba1510
  • E., Duyen, V.T., Mai, T.T., Trang, P.T.K., Viet, P.H., Lightfoot, A., Kipfer, R., Schneider, M., Eiche, E., Kontny, A., Neumann, T. Glodowska, M., Patzner, M., Kappler, A., Kleindienst, S., Rathi, B., Cirpka, O., Bostick, B., Prommer, H., Winkel, L.H.E. Berg, M., 2020. Spatial and temporal evolution of groundwater arsenic contamination in the Red River delta, Vietnam: Interplay of mobilisation and retardation processes. Science of the Total Environment 717, 137143. https://doi.org/10.1016/j.scitotenv.2020.137143
  • Moeck, C., Grech-Cumbo, N., Podgorski, J., Bretzler, A., Gurdak, J.J., Berg, M., Schirmer, M., 2020. A global-scale dataset of direct natural groundwater recharge rates: A review of variables, processes and relationships. Science of The Total Environment 717, 137042. https://doi.org/10.1016/j.scitotenv.2020.137042
  • Wallis, I., Prommer, H., Berg, M., Siade, A.J., Sun, J., Kipfer, R., 2020. The river鈥揼roundwater interface as a hotspot for arsenic release. Nature Geoscience 13(4), 288-295. https://doi.org/10.1038/s41561-020-0557-6
  • Sracek, O., Berg, M., M眉ller, B. (2018) Redox buffering and de-coupling of arsenic and iron in reducing aquifers across the Red River Delta, Vietnam, and conceptual model of de-coupling processes. Environmental Science and Pollution Research 25, 15954鈥15961. https://doi.org/10.1007/s11356-018-1801-0
  • Neidhardt H., Winkel L.H.E., Kaegi R., Stengel C., Trang P.T.K., Lan V.M., Viet P.H., Berg M. (2018) Insights into arsenic retention dynamics of Pleistocene aquifer sediments by in situ sorption experiments. Water Research 129, 123鈥132. https://doi.org/10.1016/j.watres.2017.11.018
University of Applied Sciences - germany
  • Ca帽as Kurz, E.E., Hellriegel, U., Luong V.T., Bundschuh, J., Hoinkis, J. (2020) Selective ion adsorption with pilot-scale membrane capacitive deionization (MCDI): Arsenic, ammonium and manganese removal. Water Res. & Tech. 198, 163-169.
  • Ca帽as Kurz, E.E., Luong, V.T., Hellriegel, U., Leidinger, F., Luu, T.L., Bundschuh, J., Hoinkis, J. (2020) Iron-based subsurface arsenic removal (SAR): Results of a long-term pilot-scale test in Vietnam. Water Research, 115929. https://doi.org/10.1016/j.watres.2020.115929
  • Hellriegel, U., Ca帽as Kurz, E.E., Luong, T.V., Bundschuh, J., Hoinkis, J. (2020) Modular treatment of arsenic-laden brackish groundwater using solar-powered subsurface arsenic removal (SAR) and membrane capacitive deionization (MCDI) in Vietnam. Journal of Water Reuse and Desalination. https://doi.org/10.2166/wrd.2020.031
  • Luong, V.T., Kurz, E.E.C, Hellriegel, U., Luu, T.L., Hoinkis, J., Bundschuh, J. (2018) Iron-based subsurface arsenic removal technologies by aeration: a review of the current state and future prospects. Water Research 133, 110-122. https://doi.org/10.1016/j.watres.2018.01.007
National institute of fundamental studies - Sri Lanka
  • *Kumarathilaka, P., Bundschuh, J., Seneweera, S., Ok, J.S. (2020) An integrated approach of rice hull biochar-alternative water management as a promising tool to decrease inorganic arsenic levels and to sustain essential element contents in rice. Journal of Hazardous Materials, 124188. https://doi.org/10.1016/j.jhazmat.2020.124188
  • *Kumarathilaka, P., Seneweera, S., Ok, Y.S., Meharg, A.A., Bundschuh, J. (2020) Mitigation of arsenic accumulation in rice: An agronomical, physico-chemical, and biological approach鈥揂 critical review. Critical Reviews in Environmental Science and Technology 50 (1), 31-71. https://doi.org/10.1080/10643389.2019.1618691
  • *Kumarathilaka, P., Seneweera, S., Ok, Y.S., Meharg, A.A., Bundschuh, J. (2019) Arsenic in cooked rice foods: Assessing health risks and mitigation options. Environment International 127, 584-591. https://doi.org/10.1016/j.envint.2019.04.004
  • *Kumarathilaka, P., Seneweera, S., Meharg, A., Bundschuh, J. (2018) Arsenic accumulation in rice (Oryza sativa) is influenced by environment and genetic factors. Science of the Total Environment 642, 485-496. https://doi.org/10.1016/j.scitotenv.2018.06.030
  • *Kumarathilaka, P., Seneweera, S., Meharg, A., Bundschuh, J. (2018) Arsenic speciation dynamics in paddy rice soil-water environment: sources, physico-chemical, and biological factors – a review. Water Research 140, 403-414. https://doi.org/10.1016/j.watres.2018.04.034
  • *Herath, I., Vithanage, M., Seneweera, S., Bundschuh, J. (2018) Thiolated arsenic in natural systems: what is current, what is new and what needs to be known. Environment International 115, 370-386. https://doi.org/10.1016/j.envint.2018.03.027
Link枚pings Universitet/ RISE SICS East AB - Sweden
  • Bundschuh, J., Armienta, M.A., Morales-Simfors, N., Alam, M.A., L贸pez, D.L., Delgado Quezada, V., Dietrich, S., Schneider, J., Tapia, J., Sracek, O., Castillo, E., Marco Parra, L.-M., Altamirano Espinoza, M., L.R.G. Guilherme, Sosa, N.N., Niazi, N.K., Tomaszewska, B., Lizama Allende, K., Bieger, K., Alonso, D.L., Brand茫o, P.F.B., Bhattacharya, B., Litter, M.I., Ahmad, A. 2020. Arsenic in Latin America: New findings on source, mobilization and mobility in human environments in 20 countries based on decadal research 2010-2020. Critical Reviews in Environmental Science and Technology. https://doi.org/10.1080/10643389.2020.1770527
  • Morales-Simfors, N., Bundschuh, J., Herath, I., Inguaggiato, C., Caselli, A.T., Tapia, Apaza Choquehuayta, F.E. Armienta, M.A. Ormachea, M., Joseph, E., L贸pez, D.L. Arsenic in Latin America: A critical overview on the geochemistry of arsenic originating from geothermal features and volcanic emissions for solving its environmental consequences. Science of The Total Environment, 135564. https://doi.org/10.1016/j.scitotenv.2019.135564
University of agriculture faisalabad - pakistan
  • Amen, R., Bashir,H., Bibi, I., Shaheen, S.M., Niazi, N.K., Shahid, M., Hussain, M.M., Antoniadis, V., Shakoor, M.B., Al-Solaimani, S.G., Wang, H., Bundschuh, H., Rinklebe, J., 2020. A critical review on arsenic removal from water using biochar-based sorbents: The significance of modification and redox reactions. Chemical Engineering Journal, 125195. https://doi.org/10.1016/j.cej.2020.125195
  • Amen, R., Bashir, H., Bibi, I., Shaheen, S.M., Niazi, N.K., Shahid, M., Hussain, M.M., Antoniadis, V., Shakoor, M.B., Al-Solaimani, S.G., Wang, H., Bundschuh, H., Rinklebe, J., 2020. A critical review on arsenic removal from water using biochar-based sorbents: The significance of modification and redox reactions. Chemical Engineering Journal, 125195. https://doi.org/10.1016/j.cej.2020.125195
  • Hussain, M.M., Wang, J., Bibi, I., Shahid, M., Niazi, N.K., Iqbal, J., Mian, I.A., Shaheen, S.M., Bashir, S., Shah, N.S., Hina, K., Rinklebe, J., 2020. Arsenic speciation and biotransformation pathways in the aquatic ecosystem: The significance of algae. Journal of Hazardous Materials 403, 124027. https://doi.org/10.1016/j.jhazmat.2020.124027
  • Shah, A.H., Shahid, M., Khalid, S., Shabbir, Z., Bakhat, H.F., Murtaza, B., Farooq, A., Akram, M., Shah, G.M., Nasim, W., Niazi, N.K., 2019. Assessment of arsenic exposure by drinking well water and associated carcinogenic risk in peri-urban areas of Vehari, Pakistan. Environmental Geochemistry and Health. 3, 1-13. https://doi.org/10.1007/s10653-019-00306-6
  • Sattar, M.S., Shakoor, M.B., Ali, S., Rizwan, M., Niazi, N.K, Jilani, A., 2019. Comparative efficiency of peanut shell and peanut shell biochar for removal of arsenic from water. Environmental Science and Pollution Research 26, 8624鈥18635. https://doi.org/10.1007/s11356-019-05185-z
  • Irem, S., Islam, E., Maathuis, F.J.M., Niazi, N.K., Li, T., 2019. Assessment of potential dietary toxicity and arsenic accumulation in two contrasting rice genotypes: Effect of soil amendments. Chemosphere 225, 104-114. https://doi.org/10.1016/j.chemosphere.2019.02.202
  • Shakoor, M.B., Niazi, N.K., Bibi, I., Shahid, M., Saqib, Z.A., Nawaz, M.F., Shaheen, S.M., Wang, H., Tsang, D.C.W., Bundschuh, J., Ok, Y.S., Rinklebe, J., 2019. Exploring the arsenic removal potential of various biosorbents from water. Environment International 123, 567-579. https://doi.org/10.1016/j.envint.2018.12.049
  • Shakoor, M.B., Niazi, N.K., Bibi, I., Shahid, M., Sharif, F., Bashir, S., Shaheen, S.M., Wang, H., Tsang, D.C.W., Ok, Y.S., Rinklebe, J., 2018. Arsenic removal by natural and chemically modified water melon rind in aqueous solutions and groundwater. Science of the Total Environment, 645, 1444-1455. https://doi.org/10.1016/j.scitotenv.2018.07.218
  • Tabassum, R.A., Shahid, M., Niazi, N.K., Dumat, C., Zhang, Y., Imran, M., Bakhat, H.F.S.G., Hussain, I., Khalid, S., 2018. Arsenic removal from aqueous solutions and groundwater using agricultural biowastes-derived biosorbents and biochar: A column-scale investigation. International Journal of Phytoremediation, 21(6), 509-518. https://doi.org/10.1080/15226514.2018.1501340
  • Shahid, M., Niazi, N.K., Dumat, C., Naidu, R., Khalid, S., Rahman, M.M., Bibi, I., 2018. A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan. Environmental Pollution 242, 307-319. https://doi.org/10.1016/j.envpol.2018.06.083
  • Niazi, N.K., Bibi, I., Shahid, M., Ok, Y.S., Shaheen, S.M., Rinklebe, J., Wang, H., Murtaza, B., Islam, E., Nawaz, M.F., L眉ttge, A., 2018. Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: Investigating arsenic fate using integrated spectroscopic and microscopic techniques. Science of The Total Environment, 621, 1642-1651. https://doi.org/10.1016/j.scitotenv.2017.10.063
  • Niazi, N.K., Bibi, I., Shahid, M, Ok, Y.S., Burton, E.D., Wang, H., Shaheen, S.M., Rinklebe, J., L眉ttge, A., 2018. Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: an integrated spectroscopic and microscopic examination. Environmental Pollution. 232, 31-41. https://doi.org/10.1016/j.envpol.2017.09.051
  • Shakoor, M.B., Bibi, I., Niazi, N.K., Shahid, M., Nawaz, M.F., Farooqi, A.., Naidu, R, Rahman, M.M., Murtaza, G., L眉ttge, A., 2018. The evaluation of arsenic contamination potential, speciation and hydrogeochemical behaviour in aquifers of Punjab, Pakistan. Chemosphere. 199, 737-746. https://doi.org/10.1016/j.chemosphere.2018.02.002
  • Tabassum, R.A., Shahid, M., Dumat, C., Niazi, N.K., Khalid, S., Shah, N..S, Imran, M., Khalid, S.., 2019. Health risk assessment of drinking arsenic-containing groundwater in Hasilpur, Pakistan: Effect of sampling area, depth, and source. Environmental Science and Pollution Research. 26, 20018-20029. https://doi.org/10.1007/s11356-018-1276-z
  • Shahid, M., Khalid, M., Dumat, C., Khalid, S., Niazi, N.K., Imran, M., Bibi, I., Ahmad, I., Hammad, H.M., Tabassum, R.A., 2018. Arsenic level and risk assessment of groundwater in Vehari, Punjab Province, Pakistan. Exposure and Health 10, 229-239. https://doi.org/10.1007/s12403-017-0257-7
  • Abbas, G., Murtaza, B., Bibi, I., Shahid, M., Niazi, K.N., Khan, I.M., Amjad, M., Hussain, M., Natasha, 2018. Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. International Journal of Environmental Research and Public Health 15(1), 59. https://doi.org/3390/ijerph15010059.
  • Shahid, M., Dumat, C., Khalid, S., Rabbani, F., Farooq, A.B.U., Amjad, M., Abbas, G., Niazi, N.K., 2018. Foliar uptake of arsenic nanoparticles by spinach: An assessment of physiological and human health risk implications. Environmental Science and Pollution Research. 1-11. https://doi.org/10.1007/s11356-018-3867-0.
University of Sri Jayewardenepura - Sri Lanka
  • Herath, I., Zhao, F.-J., Bundschuh, J., Wang, P., Wang, J., Ok, J.-S., Palansooriya, K.N., Vithanage, M. 2020. Microbe mediated immobilization of arsenic in the rice rhizosphere after incorporation of silica impregnated biochar composites. Journal of Hazardous Materials, 123096. https://doi.org/10.1016/j.jhazmat.2020.123096
  • Alkurdi, S.S.A., Herath, I., Bundschuh, J., Al-Juboori, R.A., Vithanage, M., Mohan, 2019. Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: What needs to be done in future research? Environment International 127, 52-69. https://doi.org/10.1016/j.envint.2019.03.012
  • Awad, Y.M., Vithanage, M., Niazi, N.K., Rizwan, M., Rinklebe, J., Yang, J.E., Ok, Y.S., Lee, S.S. 2 Correction to: Potential toxicity of trace elements and nanomaterials to Chinese cabbage in arsenic- and lead-contaminated soil amended with biochars. Environmental Geochemistry and Health, 41(4), 1777-1791, https://doi.org/10.1007/s10653-017-9989-3).
  • Herath, I., Vithanage, M., Seneweera, S., Bundschuh, 2018. Thiolated arsenic in natural systems: what is current, what is new and what needs to be known. Environment International 115, 370-386. https://doi.org/10.1016/j.envint.2018.03.027
  • Vithanage, M., 2018. (book review). Arsenic Research and global Sustainability鈥擜s 2016 Bhattacharya et al., (Eds) ISBN 978-1-138-02941-5. Science of The Total Environment 618, 608-609. https://doi.org/10.1016/j.scitotenv.2017.04.155
the hong kong polytechnic university - hong kong p.r. china
  • Wang, L., Chen, L., Guo, B., Tsang, D.C.W., Huang, L., Ok, Y.S, Mechtcherine, V., 2020. Red mud-enhanced magnesium phosphate cement for remediation of Pb and As contaminated soil. Journal of Hazardous Materials 400, 123317. https://doi.org/10.1016/j.jhazmat.2020.123317
  • Li, F., Wan, Y., Chen, J., Hu, X., Tsang, D.C.W., Wang, H., Gao, B., 2020. Novel ball-milled biochar-vermiculite nanocomposites effectively adsorb aqueous As(鈪). Chemosphere 260, 127566. https://doi.org/10.1016/j.chemosphere.2020.127566
  • Zhong, D., Zhao, Z., Jiang, Y., Yang, X., Wang, L., Chen, J., Guan, C.-Y., Zhang, Y., Tsang, D.C.W., Crittenden, J.C., 2020. Contrasting abiotic As(III) immobilization by undissolved and dissolved fractions of biochar in Ca2+-rich groundwater under anoxic conditions. Water Research 183, 116106. https://doi.org/10.1016/j.watres.2020.116106
  • Wei, X., Zhou, Y., Tsang, D.C.W., Song, L., Zhang, C., Yin, M., Liu, J., Xiao, T., Zhang, G., Wang, J., 2020. Hyperaccumulation and transport mechanism of thallium and arsenic in brake ferns (Pteris vittata): A case study from mining area. Journal of Hazardous Materials 388, 121756. https://doi.org/10.1016/j.jhazmat.2019.121756
  • Kim, J.G., Kim, H.B., Yoon, G.S., Kim, S.H., Min, S.J., Tsang, D.C.W., Baek, K,. 2020. Simultaneous oxidation and adsorption of arsenic by one-step fabrication of alum sludge and graphitic carbon nitride (g-C3N4). Journal of Hazardous Materials 383, 121138. https://doi.org/10.1016/j.jhazmat.2019.121138
  • Wang, X., Ding, J., Wang, L., Zhang, S., Hou, H., Zhang, J., Chen, J., Ma, M., Tsang, D.C.W., Wu, X., 2020. Stabilization treatment of arsenic-alkali residue (AAR): Effect of the coexisting soluble carbonate on arsenic stabilization. Environment International 135, 105406. https://doi.org/10.1016/j.envint.2019.105406
  • Li, J.S., Wang, L., Cui, J.L., Poon, C.S., Beiyuan, J., Tsang, D.C.W., Li, X.D., 2018. Effects of low-alkalinity binders on stabilization/solidification of geogenic As-containing soils: Spectroscopic investigation and leaching tests. Science of The Total Environment 631-632, 1486-1494. https://doi.org/10.1016/j.scitotenv.2018.02.247
  • Wei, X., Zhou, Y., Tsang, D.C.W., Zhang, C., Yin, M., Liu, J., Xiao, T., Wang, J., Feng, Y., 2020. Hyperaccumulation and transport mechanism of thallium and arsenic in a brake fern (Pteris vittata): A case study from mining area. Journal of Hazardous Materials, 121756. https://doi.org/10.1016/j.jhazmat.2019.121756
  • Wang, X., Ding, J., Wang, L., Zhang, S., Hou, H., Zhang, J., Chen, J., Ma, M., Tsang, D.C.W., Wu, X., 2020. Stabilization treatment of arsenic-alkali residue (AAR): Effect of the coexisting soluble carbonate on arsenic stabilization. Environment International, 135, 105406. https://doi.org/10.1016/j.envint.2019.105406
  • Kim, J.G., Kim, H.B., Yoon, G.S., Kim, S.H., Min, S.J., Tsang, D.C.W., Baek, K., 2020. Simultaneous oxidation and adsorption of arsenic by one-step fabrication of alum sludge and graphitic carbon nitride (g-C3N4). Journal of Hazardous Materials 383, 121138. https://doi.org/10.1016/j.jhazmat.2019.121138
  • Wang, L., Cho, D.W., Tsang, D.C.W., Cao, X., Hou, D., Shen, Z., Alessi, D.S., Ok, Y.S., Poon, C.S., 2019. Green remediation of As and Pb contaminated soil using cement-free clay-based stabilization/solidification. Environment International 126, 336-345. https://doi.org/10.1016/j.envint.2019.02.057
  • Wang, L., Chen, L., Tsang, D.C.W., Zhou, Y., Rinklebe, J., Song, H., Kwon, E.E., Baek, K., Ok, Y.S., 2019. Mechanistic insights into red mud, blast furnace slag, or metakaolin-assisted stabilization/solidification of arsenic-contaminated sediment. Environment International 133, 105247. https://doi.org/10.1016/j.envint.2019.105247
  • Wang, X., Zhang, H., Wang, L., Chen, J., Xu, S., Hou, H., Shi, Y., Zhang, J., Ma, M., Tsang, D.C.W., Crittenden, J.C., 2019. Transformation of arsenic during realgar tailings stabilization by ferrous sulfate in a pilot-scale treatment. Science of The Total Environment 668, 32-39. https://doi.org/10.1016/j.scitotenv.2019.02.289
  • Lee, M.E., Jeon, E.K., Tsang, D.C.W., Baek, K., 2018. Simultaneous application of oxalic acid and dithionite for enhanced extraction of arsenic bound to amorphous and crystalline iron oxides. Journal of Hazardous Materials 354, 91-98. https://doi.org/10.1016/j.jhazmat.2018.04.083
  • Leung, Y.F., Liu, W., Li, J.S., Wang, L., Tsang, D.C.W., Lo, C.Y., Leung, M.T., Poon, C.S., 2018. Three-dimensional spatial variability of arsenic-containing soil from geogenic source in Hong Kong: Implications on sampling strategies. Science of The Total Environment 633, 836-847. https://doi.org/10.1016/j.scitotenv.2018.03.049
  • Cui, J.L., Zhao, Y.P., Li, J.S., Beiyuan, J., Tsang, D.C.W., Poon, C.S., Chan, T.S., Wang, W.X., Li, X.D., 2018. Speciation, mobilization, and bioaccessibility of arsenic in geogenic soil from Hong Kong. Environmental Pollution 2018, 232, 375-384. https://doi.org/10.1016/j.envpol.2017.09.040
University of Queensland - australia
  • Teixeira, M.C., Santos, A.C., Fernandes, C.S., Ng, J.C., 2020. Arsenic contamination assessment in Brazil鈥揚ast, present and future concerns: A historical and critical review. Science of The Total Environment 730, 138217. https://doi.org/10.1016/j.scitotenv.2020.138217
  • Morais, M.A., Gasparon, M., Delbem, I.D., Caldeira, C.L., Freitas, E.T.F., Ng, J.C., Ciminelli, V.S.T., 2019. Gastric/lung bioaccessibility and identification of arsenic-bearing phases and sources of fine surface dust in a gold mining district, Science of The Total Environment 689, 1244鈥1254. https://doi.org/10.1016/j.scitotenv.2019.06.394
  • Ng, J.C., Ciminelli, V., Gasparon, M., Caldeira, C., 2019. Health risk apportionment of arsenic from multiple exposure pathways in Paracatu, a gold mining town in Brazil. Science of The Total Environment, 673, 36-43. https://doi.org/10.1016/j.scitotenv.2019.04.048
  • Sui, S., Ng, J., Gao, Y.X., Peng, C., He, C., Wang, G.L., Liu, Z.Y., 2019. Pollution characteristics and chronic health risk assessment of metals and metalloids in ambient PM2.5 in Licheng District, Jinan, China. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00448-7
  • Ciminelli, V.S.T., Ant么nio, D.C., Caldeira, C.L., Freitas, E,T.F., Delbem, I.D., Fernandes, M.M., Gasparon, M., Ng, J.C., 2018. Low arsenic bioaccessibility by 铿亁ation in nanostructured iron (Hydr)oxides: Quantitative identi铿乧ation of As-bearing phases. Journal of Hazardous Materials 353, 261-270. https://doi.org/10.1016/j.jhazmat.2018.03.037
  • Sasikumar Muthusamy, Cheng Peng, Jack C. Ng (2018). Genotoxicity evaluation of multi-component mixtures of polyaromatic hydrocarbons (PAHs), arsenic, cadmium, and lead using 铿俹w cytometry based micronucleus test in HepG2 cells. Mutation Research, (Genetic Tox & Env Mutagenesis), 827, 9-18. https://doi.org/10.1016/j.mrgentox.2018.01.002
chinese academy of sciences (CAS), institute of urban environment - P.R. China
  • Zhou, G.W., Yang, X.-R., Zheng, F., Zhang, Z.-X., Zheng, B.-X., Zhu, Y.-G., Xue, X.-M., 2020. Arsenic transformation mediated by gut microbiota affects the fecundity of Caenorhabditis elegans. Environmental Pollution 260, 113991. https://doi.org/10.1016/j.envpol.2020.113991
  • Chen, O., Zhang, H.M., Yao, B.M., Chen, S.C., Sun, G.X., Zhu, Y.G., 2020. Bioavailable arsenic and amorphous iron oxides provide reliable predictions for arsenic transfer in soil-wheat system. Journal of Hazardous Materials 383, 121160. https://doi.org/10.1016/j.jhazmat.2019.121160
  • Yang, Y.P., Zhang, H.-M., Yuan, H.Y., Duan, G.-L., Jin, D.-C., Zhao, F.-J., Zhu, Y.-G., 2018. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. Environmental Pollution 236, 598-608. https://doi.org/10.1016/j.envpol.2018.01.099
  • Wang, H.-T., Ding, J., Xiong, C., Zhu, D., Li, G., Jia, X.-Y., Zhu, Y.-G., Xue, X.-M., 2019. Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica. Environmental Pollution 251, 110-116. https://doi.org/10.1016/j.envpol.2019.04.054
  • Yang, Y.-P., Wang, P., Yan, H.-J., Zhang, H.-M., Cheng, W.-D., Duan, G.-L., Zhu, Y.-G., 2019. NH4H2PO4-extractable arsenic provides a reliable predictor for arsenic accumulation and speciation in pepper fruits (Capsicum annum). Environmental Pollution 251, 651-658. https://doi.org/10.1016/j.envpol.2019.05.042
  • Yan, H., Gao, Y., Wu, L., Wang, L., Zhang, T., Dai, C., Xu, W., Feng, L., Ma, M., Zhu, Y.-G., He, Z., 2019. Potential use of the Pteris vittata arsenic hyperaccumulation-regulation network for phytoremediation. Journal of Hazardous Materials 368, 386-396. https://doi.org/10.1016/j.jhazmat.2019.01.072
  • Yi, X.-Y., Yang, Y.-P., Yuan, H.-Y., Chen, Z., Duan, G.-L., Zhu, Y.-G., Coupling metabolisms of arsenic and iron with humic substances through microorganisms in paddy soil. Journal of Hazardous Materials 373, 591-599. https://doi.org/10.1016/j.jhazmat.2019.03.113
  • Zama, E.F., Reid, B.J., Sun, G.-X., Yuan, H.-Y., Li, X.-M., 2018. Silicon (Si) biochar for the mitigation of arsenic (As) bioaccumulation in spinach (Spinacia oleracean) and improvement in the plant growth. Journal of Cleaner Production 189, 386-395. https://doi.org/1016/j.jclepro.2018.04.056
  • Zhao, Y., Su, J.-Q., Ye, J., Rensing, C., Tardif, S., Zhu, Y.-G., Koefoed Brandt, K., 2019. AsChip: A High-Throughput qPCR Chip for Comprehensive Profiling of Genes Linked to Microbial Cycling of Arsenic. Environmental Science & Technology 53(2), 798-807. https://doi.org/10.1021/acs.est.8b03798
  • Xue, X.-M., Ye, J., Raber, G., Rosen, B.-P., Francesconi, K., Xiong, C., Zhu, Z., Rensing, K., Zhu, Y.-G., 2019. Identification of Steps in the Pathway of Arsenosugar Biosynthesis. Environmental Science & Technology 53(2), 634-641. https://doi.org/10.1021/acs.est.8b04389
  • Wang, H.-T., Zhu, D., Li, G., Zheng, F., Ding, J., O鈥機onnor, P.J., Zhu, Y.-G., Xue, X.-M., 2019. Effects of Arsenic on Gut Microbiota and Its Biotransformation Genes in Earthworm Metaphire sieboldin. Environmental Science & Technology 53(7), 3841-3849. https://doi.org/10.1021/acs.est.8b06695
  • Wang, H.-T., Chi, W.-Q., Zhu, D., Li, G., Ding, J., An, X.-L., Zheng, F., Zhu, Y.-G., Xue, X.-M., 2019. Arsenic and Sulfamethoxazole Increase the Incidence of Antibiotic Resistance Genes in the Gut of Earthworm. Environmental Science & Technology 53(17), 10445-10453. https://doi.org/10.1021/acs.est.9b02277
  • Yan, Y., Chen, J., Galva虂n, A.E., Garbinski, L.-D., Zhu, Y.-G., Rosen, B.P., Yoshinaga, M., 2019. Reduction of Organoarsenical Herbicides and Antimicrobial Growth Promoters by the Legume Symbiont Sinorhizobium meliloti. Environmental Science & Technology 53(23), 13648-13656. https://doi.org/10.1021/acs.est.9b04026
  • Sun, L., Carey, M., Yang, L., Chen, L.-D., Li, S.-J., Zhao, F.-K., Zhu, Y.-G., Meharg, C., Meharg, A.A., 2019. Source Identification of Trace Elements in Peri鈥憉rban Soils in Eastern China. Exposure and Health 11, 195鈥207. https://doi.org/10.1007/s12403-018-0290-1
  • Wang, H.-Y., Chen, P., Zhu, Y.-G., Cen, K., Sun, G.-X., 2019. Simultaneous adsorption and immobilization of As and Cd by birnessite-loaded biochar in water and soil. Environmental Science and Pollution Research 26, 8575鈥8584. https://doi.org/10.1007/s11356-019-04315-x
AGH University of Science and Technology (AGH-UST) & Polish Academy of Sciences - Poland
  • Bundschuh, J., Armienta, M.A., Morales-Simfors, N., Alam, M.A., L贸pez, D.L., Delgado Quezada, V., Dietrich, S., Schneider, J., Tapia, J., Sracek, O., Castillo, E., Marco Parra, L.-M., Altamirano Espinoza, M., L.R.G. Guilherme, Sosa, N.N., Niazi, N.K., Tomaszewska, B., Lizama Allende, K., Bieger, K., Alonso, D.L., Brand茫o, P.F.B., Bhattacharya, B., Litter, M.I., Ahmad, A., 2020. Arsenic in Latin America: New findings on source, mobilization and mobility in human environments in 20 countries based on decadal research 2010-2020. Critical Reviews in Environmental Science and Technology. https://doi.org/10.1080/10643389.2020.1770527
  • Tomaszewska, B., Bundschuh, J., Pajak, L., Dendys, M., Delgado Quezada, V., Bodzek, M., Armienta, M.A., Mu帽oz, M.O., Kasztelewicz, A., 2020. Use of low-enthalpy and waste geothermal energy sources to solve arsenic problems in freshwater production in selected regions of Latin America using a process membrane distillation – research into model solutions. Journal of the Total Environment, 136853. https://doi.org/10.1016/j.scitotenv.2020.136853
  • Jarma, Y.A., Karao臒lu, A., Tekin, 脰., Baba, A., 脰kten, E., Tomaszewska, B. Bostanc谋, K., Arda, M., Kabay, N., 2020. Assessment of different nanofiltration and reverse osmosis membranes for simultaneous removal of arsenic and boron from spent geothermal water. Journal of Hazardous Materials, 124129. https://doi.org/10.1016/j.jhazmat.2020.124129
Universidad de Atacama 鈥 Chile
  • Bundschuh, J., Armienta, M.A., Morales-Simfors, N., Alam, M.A., L贸pez, D.L., Delgado Quezada, V., Dietrich, S., Schneider, J., Tapia, J., Sracek, O., Castillo, E., Marco Parra, L.-M., Altamirano Espinoza, M., L.R.G. Guilherme, Sosa, N.N., Niazi, N.K., Tomaszewska, B., Lizama Allende, K., Bieger, K., Alonso, D.L., Brand茫o, P.F.B., Bhattacharya, B., Litter, M.I., Ahmad, A., 2020. Arsenic in Latin America: New findings on source, mobilization and mobility in human environments in 20 countries based on decadal research 2010-2020. Critical Reviews in Environmental Science and Technology. https://doi.org/10.1080/10643389.2020.1770527

Journals and Book Series

Groundwater for Sustainable Development

AN INTERNATIONAL JOURNAL

The Chair is collaborating with the International Society 鈥淕roundwater for Sustainable Development鈥 (ISGSD) and Elsevier Publishers in the edition of the journal 鈥淕roundwater for Sustainable Development鈥 which also constitutes a source of information and publication opportunities within arsenic topics.

Source Normalized Impact per Paper (SNIP):聽1.076聽
SCImago Journal Rank (SJR):聽0.562聽
Volumes:聽Volumes 8-9
Issues:聽2 issues
Supports Open Access
ISSN:聽2352801X

Editors-in-Chief
Prosun Bhattacharya

KTH Royal Institute of Technology Department of Sustainable Development Environmental Science and Engineering, Stockholm, Sweden

Jochen Bundschuh

University of Southern Queensland, Toowoomba, Australia

Arsenic in the Environment

A BOOK SERIES

The book series “Arsenic in the Environment – Proceedings” comprises the outcomes of the international congress series Arsenic in the Environment, and other scientific events constitute a regular update on the newest developments of global arsenic research. This Proceedings series forms an ideal complementation to the books of the series “Arsenic in the Environment”. Both together form an inter-and multidisciplinary source of state-of-art information and an international platform for arsenic research, making an effort to link the occurrence of geogenic arsenic in different environments and media including ground- and surface water, soil and air, and its effect on human society.

Series Editors
Jochen Bundschuh

University of Southern Queensland, Toowoomba, Australia

Prosun Bhattacharya

Royal Institute of Technology, Stockholm, Sweden

Contributors

A. B. Mukherjee
Helsinki University Environmental Research Centre, Finland

Bruce Hendry
Cape Peninsula University of Technology, Cape Town, South Africa

Chen-Wuing Liu
National Taiwan University, Taipei City, Taiwan

Chien-Jen Chen
Academia Sinica, Taipei, Taiwan

Eleonora Deschamps
Fundacao Estadual do Meio Ambiente (FEAM), Minas Gerais, Brazil

Hartmut M. Holl盲nder
University of Manitoba, Winnipeg, Canada

How-Ran Guo
National Cheng Kung University, Tainan, Taiwan

Jiin-Shuh Jean
Department of Earth Sciences, Tainan, Taiwan

Joanne M. Santini
University College London, UK

Jochen Bundschuh
University of Southern Queensland (USQ), Toowoomba, QLD, Australia & Royal Institute of Technology (KTH), Stockholm, Sweden

J枚rg Matschullat
Technical University, Bergakademie, Freiberg, Germany

Kazuharu Yoshizuka
Kitakyushu University, Japan

Lena Qiying Ma
University of Florida, Gainesville, FL, USA

M. A. Armienta
National Autonomous University of Mexico

Marek Bryjak
Wroclaw University of Technology, Poland

Nalan Kabay
Ege University, Izmir, Turkey

Peter Birkle
Instituto de Investigaciones El茅ctricas, Gerencia de Geotermia, Cuernavaca, M茅xico

Prosun Bhattacharya
Royal Institute of Technology (KTH), Stockholm, Sweden

Seamus A. Ward
University College London, UK

Suer Anac
Ege University, Izmir, Turkey

Tsair-Fuh Lin
National Cheng Kung University, Tainan City, Taiwan

Yen-Hua Chen
National Cheng Kung University, Tainan City, Taiwan

Sustainable Water Developments - Resources, Management, Treatment, Efficiency and Reuse

A BOOK SERIES

The book series provides a source of valuable information for small communities with decentralized water supply and sanitation up to large industries that employ many professionals in each of the countries worldwide working in the different fields of freshwater production, wastewater treatment and water reuse. In contrast to many other industries, which suffer from the global economic downturn observed in many countries, water and wastewater industries form a fast growing sector and provide significant investment opportunities and markets.聽

Series Editor
Jochen Bundschuh

University of Southern Queensland, Toowoomba, Australia

Contributors

Arslan Ahmad
KWR Water Cycle Research Institute, The Netherlands

Barry N. Noller
The University of Queensland, Brisbane, Australia

Charlotte Sparrenbom
Lund University, Sweden

Gunnar Jacks
KTH Royal Institute of Technology, Stockholm, Sweden

Huaming Guo

Hugo B. Nicolli
National University of General San Mart铆n, Prov. de Buenos Aires, Argentina

Jack C. Ng
The University of Queensland, Brisbane, Australia

Jerker Jarsj枚

Jiin-Shuh Jean
Department of Earth Sciences, Tainan, Taiwan

Jochen Bundschuh
University of Southern Queensland (USQ), Toowoomba, QLD, Australia & Royal Institute of Technology (KTH), Stockholm, Sweden

Jurate Kumpiene
Lule氓 University of Technology, Lule氓, Sweden

Marie Vahter
Inst of Environmental Medicine, Stockholm, Sweden

Marinus Eric Donselaar
University of Technology, Delft, The Netherlands

Marta I. Litter
Martin Meichtry
National University of General San Mart铆n, Prov. de Buenos Aires, Argentina

Natalia Quici
CONICET, Buenos Aires, Argentina

Prosun Bhattacharya
Royal Institute of Technology, Stockholm, Sweden

Ravi Naidu

University of South Australia, Adelaide, Australia

Yongguan Zhu

 

Subscribe To OurMailing List

Join our mailing list to receive the latest news and updates from our team.

You have Successfully Subscribed!